

Type de produit	Série	Page	Vérins pneumatiques
Microvérins Ø 8 ÷ 25 mm selon normes ISO 6432	M	3-9	
Vérins Ø 32 ÷ 200 mm selon normes ISO 6431/VDMA 24562	K KD	10-19	High-Tech
Vérins pneumatiques rotatifs Ø 32 ÷ 125 mm	R	20-22	
Vérin compact Ø 16 ÷ 63 mm conforme aux recommandations UNITOP RU-P/7 et ISO 21287	RP-RM RO-RN	23 - 38	Vannes
Vérin compact STRONG Ø 32 ÷ 63 mm avec entraxes, diamètres de centrage et tiges selon normes ISO 6431 et VDMA 24562	RS RQ	38 - 52	
Vérin compact STRONG Ø 32 ÷ 63 mm avec vanne VDMA série BD intégrée	RV	53	Groupe traitement d'air - FRL
Vérins faible course Ø 12 ÷ 100 mm Version avec tige antirotation selon normes EN 349	W	55-64	
Vérins ovales Ø 18 ÷ 80 mm	OV	65 - 70	Accessoires

Grâce au dessin très lineaire, précis et arrondi sans arêtes, ces vérins sont indiqués pour l'emploi dans les secteurs industriels (alimentaire, pharmaceutique etc.) qui ont besoin non seulement d'une fiabilité technologique élevée mais aussi d'une grande facilité de nettoyage.

CARACTERISTIQUES TECHNIQUES

Pression de fonctionnement : 1,5 ÷ 10 bar

Température ambiante: -20 ÷ 80°C

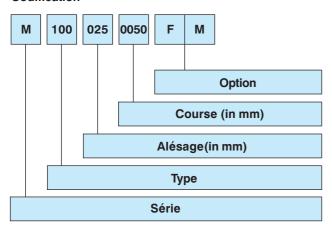
Fluide: air comprimé, avec ou sans lubrification Tube: en acier inox avec fonds et têtes chanfreinés,

et tige en acier inox de série.

Courses standard (tableau page 4)

Type M160... jusqu'à une course max. de 50 mm

Type M170... jusqu'à une course max. de 25 mm


Vitesse max: jusqu'à 2 m/sec. sans amortissement réglable jusqu'à 5 m/sec. avec amortissement réglable

Option

- Version magnétique Ø10 ÷ 25 mm. Capteur magnétique Série DH-... (section accessoires page 3) (pour Ø 16 mm seulement avec tige chromée capteur magnétique DH-500)
- Bloqueur de tige Ø16 ÷ 25 mm (section High-Tech page 3) seulement avec tige chromée série M2...
- Unité de guidage à partir du Ø 16 (section High-Tech page 36).

Codification

SÉRIE

M = microvérins Ø 8 ÷ 25 mm

TYPE

tige inox version standard.

<u>|2, _, _</u> tige chromée seulement avec bloqueur de tige.

<u>13 – – </u> tige inox version réduite.

tige inox version réduite avec alimentation arrière.

- ___ 0 _ 0 D.E. Version standard
- ____ **D.E.** Tige traversante
- $\lfloor -, 5, 0 \rfloor$ D.E. Amortissement pneumatique de fin de course réglable pour les Ø 16 \div 25 mm.
- L___6_0 S.E. Simple effet tige rentrée Ø 10 ÷ 25 mm, course max 50 mm.
- \lfloor __.7.0 \rfloor **S.E.** Simple effet tige sortie Ø 16 ÷ 25 mm, course max 25 mm.

ALÉSAGE

Ø 008 - 010 - 012 - 016 - 020 - 025

COURSE

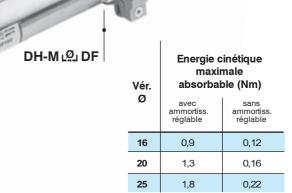
 $0010\text{-}0020\text{-}0025\text{-}0030\text{-}0040\text{-}0050\text{-}0075\text{-}0080\text{-}0100\text{-}0125\text{-}} \\ 0150\text{-}0160\text{-}0175\text{-}0200\text{-}0250\text{-}0300\text{-}0320\text{-}0400\text{-}0500$

OPTION

F = Pour utilisation avec bloqueur de tige avec saillie réduite.

M = Version magnétique Ø 10 ÷ 25 mm.

Détails de construction


- Tube en acier inox AISI 304
- Têtes et fonds en alliage d'aluminium extrudé et anodisé, chanfreinés sur le tube
- Butoirs mécaniques en caoutchouc montés de série dans têtes et fonds (Série M100...) Ø 12 ÷ 25 mm.
- Amortissements pneumatiques réglables avec una vis à pointeau (Série M150...) Ø 16 - 20 - 25 mm
- Joints en caoutchouc nitrile autolubrifiants résistant à l'huile.
- Patin de guidage du piston en résine acétalique:
 Ø 16 20 25 mm

Tólérance nominale sur la course:
 Ø 8 ÷ 25 mm + 1,5/0 mm

 Piston en alliage d'aluminium: Ø 20 - 25 mm en laiton: Ø 8 ÷ 16 mm

 Microvérins livrés complets avec écrous de tige (MF - 16 + Ø) et de tête (MF - 20 + Ø).

Microvérin simple effet

Vér. Ø	Courses standard (les valeurs en noir sont préférentielles selon les normes UNI 4393)		Force de poussée min-max du ressort (N)									sse mobiles	Masse Vérin		
	160) 170 Course 10 Cour		se 25	se 25 Course 40		Course 50		Course 0 kg	Augment. par mm (g)	Course 0 kg	Augment. par mm (g)			
10	10 - 25 40 - 50		6,9	7,6	5,8	7,6	4,7	7,6	4	7,6	0,009	0,1	0,038	0,23	
12	10 - 25 40 - 50		8,1	8,7	7,3	8,7	6,5	8,7	5,9	8,7	0,023	0,22	0,079	0,38	
16	10 - 25 40 - 50	10 - 25	14,4	16	11,9	16	9,4	16	7,8	16	0,026	0,22	0,085	0,43	
20	10 - 25 40 - 50	10 - 25	18,6	20	16,5	20	14,4	20	13	20	0,045	0,4	0,167	0,66	
25	10 - 25 40 - 50	10 - 25	21,8	23,5	19,3	23,5	16,7	23,5	15	23,5	0,08	0,62	0,238	0,95	

Microvérin double effet

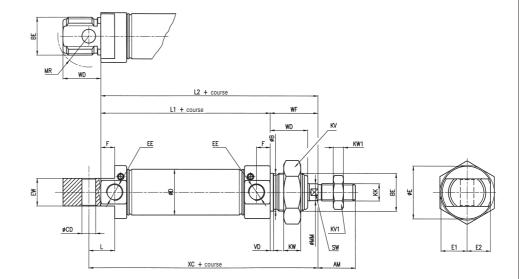
Vér.	Courses standard	Force min.de pous-	Force de	parties	asse mobiles	Mass	e vérin	Long. d'amor-
Ø	(les valeurs en noir sont préférentielles selon les normes UNI 4393)	sée 6 bar (N)	traction 6 bar (N)	Course 0 (kg)	Augment. par mm (g)	Course 0 (kg)	Augment. par mm (g)	tissem. (mm)
8	10 20 25 30 40 50 75 80 100 125 150 160	20	16	0,007	0,1	0,037	0,21	-
10	10 20 25 30 40 50 75 80 100 125 150 160	35	32	0,009	0,1	0,038	0,23	-
12	10 20 25 30 40 50 75 80 100 125 150 160 175 200 250	50	38	0,023	0,22	0,078	0,38	-
16	10 20 25 30 40 50 75 80 100 125 150 160 175 200 250	90	87	0,023	0,22	0,085	0,43	16
•16	25 30 40 50 75 80 100 125 150 160 175 200 250 300 320 400 500		07	0,025	0,22	0,087	0,43	10
20	10 20 25 30 40 50 75 80 100 125 150 160 175 200 250 300	1/10	140	0,045	0,4	0,167	0,66	18
•20	25 30 40 50 75 80 100 125 150 160 175 200 250 300 320 400 500	148	140	0,048	0,4	0,17	0,00	10
25	10 20 25 30 40 50 75 80 100 125 150 160 175 200 250 300 320 400 500			0,080		0,237		
•25	25 30 40 50 75 80 100 125 150 160 175 200 250 300 320 400 500	250	220	0,088	0,62	0,245	0,95	22

version avec amortissement pneumatique réglable

UNIVER est à même de livrer le vérin avec des variations de course d'un millimètre (courses intermédiaires) ou courses supérieures à celles standard.

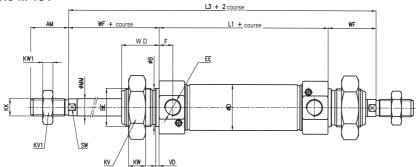
Vérin double /simple effet

Série M 100


Série M 150

Série M 160

Série M 170

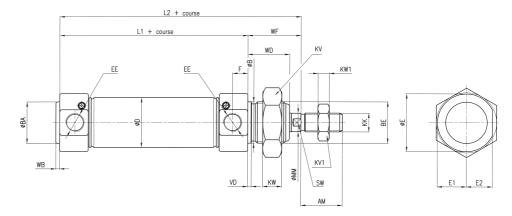

Vérin double effet tige traversante

Série M 101

Série M 151

	1		ΙØ	I I	l	I -	ı _	i	I	l +	I I	l	
Vér.	AM	В	BA	BE	CD	D	øΕ	E1	E2	* EE	EW	KV	KV1
Ø		h 10			Н9						d 13		
8	12	12		M12 x 1,25	4	9,3	14	8	8,5	M5 x 0,8	8	19	7
10	12	12		M12 x 1,25	4	11,3	14	8	8,5	M5 x 0,8	8	19	7
12	16	16		M16 x 1,5	6	13,3	17	9,5	10	M5 x 0,8	12	24	10
16	16	16	16	M16 x 1,5	6	17,3	20,8	10,4	9,6	M5 x 0,8	12	24	10
20	20	22	22	M22 x 1,5	8	21,6	27,7	13,85	12	G 1/8	16	32	13
25	22	22	22	M22 x 1,5	8	26,6	30,7	15,35	13,75	G 1/8	16	32	17

Vér.	F	кк	KW	KW1	L	L1	L2	L3	ММ	MR	sw	VD	WA	WD	WF	хс
Ø															± 1,2	± 1
8	5	M4 x 0,7	7	2,8	7	46	62	78	4	12	3	1,5		12	16	64
10	5	M4 x 0,7	7	2,8	7	46	62	78	4	12	3	1,5		12	16	64
12	5	M6 x 1	8	4	9	50	72	94	6	16	5	1,5		17	22	75
16	5,5	M6 x 1	8	4	8	56	78	100	6	16	5	1,5	5,5	17	22	82
20	8	M8 x 1,25	10	5	11	68	92	116	8	18	7	2	5,5	19	24	95
25	8	M10 x 1,25	10	6	15	69	97	125	10	18	9	2	7,5	22	28	104


^{*} La série en pouces a été choisie en conformité avec UNI-ISO 228/1

Vérin double effet avec amortissement Ø 16-20-25 mm

Série M 350

Vérin double effet sans amortissement avec alimentation standard ø 10 ÷ 25 mm;

Série M 300

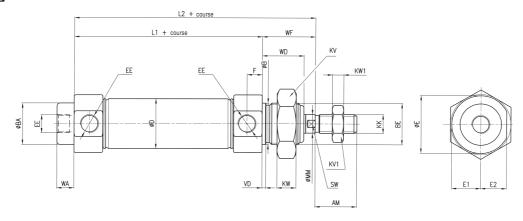
Vérin double effet sans amortissement avec alimentation arrière Ø 10 ÷ 25 mm

Vérin simple effet tige rentrée avec alimentation

Série M 500

Vérin simple effet tige rentrée Ø 10 \div 25 mm; simple effet tige sortie Ø 16 \div 25 mm, tous deux avec alimentation standard

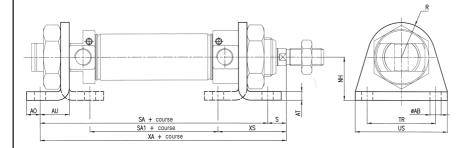
1....


Série M 360

Série M 560

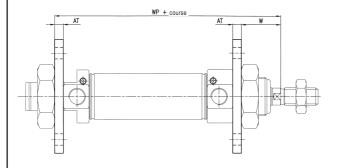
arrière Ø 10 ÷ 25 mm

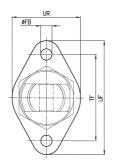
Série M 370


Vér	AM	B h10	BA Ø	BE	D	E Ø	E1	E2	*EE	KV	KV1
Ø		1110	Ø			W					
10	12	12	12	M12 x 1,25	11,3	15,8	7,9	7,2	M5 x 0,8	19	7
12	16	16	16	M16 x 1,5	13,3	18,8	9,4	8,7	M5 x 0,8	24	10
16	16	16	16	M16 x 1,5	17,3	20,8	10,4	9,6	M5 x 0,8	24	10
20	20	22	22	M22 x 1,5	21,6	27,7	13,85	12	G 1/8	32	13
25	22	22	22	M22 x 1,5	26,6	30,7	15,35	13,75	G 1/8	32	17

Vér Ø	F	KK	KW	KW1	L1	L2	ММ	SW	VD	WA	WB	WD	WF ± 1,2
10	5	M4 x 0,7	7	2,8	46	62	4	3	1,5	4		12	16
12	5	M6 x 1	8	4	50	72	6	5	1,5	4,5		17	22
16	5,5	M6 x 1	8	4	56	78	6	5	1,5	5,5	1,5	17	22
20	8	M8 x 1,25	10	5	68	92	8	7	2	5,5	2	19	24
25	8	M10 x 1,25	10	6	69	97	10	9	2	9	2	22	28

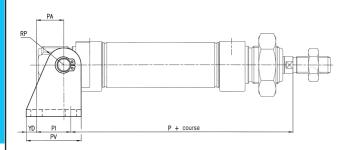
^{*} La série en pouces a été choisie en conformité avec UNI-ISO 228/1

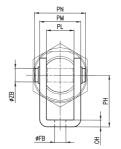



Equerre en acier zingué pour Ø 8 ÷ 25 mm (MS 3)

	Vér	AB	АО	АТ	AU	NH	R	s	SA	SA1	TR	US	ХА	xs		
	Ø	H13			+0,3 0	±0,3					Js14			±1,4	Masse kg	Code
	8-10	4,5	5	3	11	16	10	5	68	30	25	35	73	24	0,02	MF-13008
	12	5,5	6	4	14	20	13	8	78	30	32	42	86	32	0,04	MF-13012
	16	5,5	6	4	14	20	13	8	84	36	32	42	92	32	0,04	MF-13012
	20	6,6	8	5	17	25	20	7	102	44	40	54	109	36	0,09	MF-13020
ĺ	25	6,6	8	5	17	25	20	11	103	45	40	54	114	40	0,09	MF-13020

Bride en acier zingué pour Ø 8 ÷ 25 mm (MF8)





Vér		ΑT	FB	TF	UF	UR	W	WP	Masse	Code
	Ø		H13	Js14			±1,4		kg	Oode
8-	10	3	4,5	30	40	25	13	65	0,012	MF-12008
1	2	4	5,5	40	53	30	18	76	0,025	MF-12012
1	6	4	5,5	40	53	30	18	82	0,025	MF-12012
_2	0.	5	6,6	50	66	40	19	97	0,049	MF-12020
2	5	5	6,6	50	66	40	23	102	0,049	MF-12020

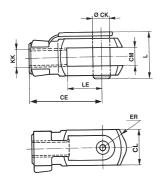
Articulation femelle arrière en acier zingué, Ø 8 \div 25 mm avec axe et 2 circlips

Vér.	Ø FB	он	Р	РА	РН	PI	PL	РМ	PN	PV	RP	YD	ZB	Masse	Code
ø	H13						E9						f8	kg	
8-10	4,5	2,5	62,5	11	24	12,5	8,1	13,1	17	20	5,3	3,8	4	0,019	MF - 21008
12	5,5	3	73	13	27	15	12,1	18,1	23	25	7	5	6	0,037	MF - 21012
16	5,5	3	80	13	27	15	12,1	18,1	23	25	7	5	6	0,037	MF - 21012
20	6,6	4	91	16	30	20	16,1	24,1	30	32	10	6	8	0,08	MF - 21020
25	6,6	4	100	16	30	20	16,1	24,1	30	32	10	6	8	0,08	MF - 21020

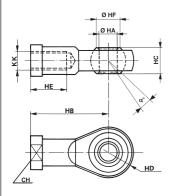
Ecrou pour tige en acier zingué

Vér. Ø	кк	KV 1	KW1	Code
8-10	M4 x 0,7	7	2,8	MF - 16008
12-16	M6 x 1	10	4	MF - 16012
20	M8 x 1,25	13	5	MF - 16020
25	M10 x 1,25	17	6	KF - 16032

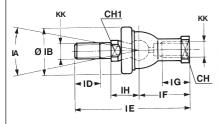
Ecrou pour tête et fond en acier zingué



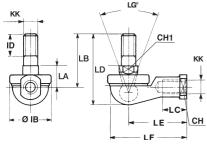
Vér. Ø	BE	KV ⊝	KW	Code
8-10	M12 x 1,25	19	7	MF - 20008
12-16	M16 x 1,5	24	8	MF - 20012
20-25	M22 x 1,5	32	10	MF - 20020



Chape femelle de tige en acier zingué selon ISO 8140 avec axe


	CE	СК	CL	СМ	ER	KK	L	LE		
Vér. Ø				B12 B12					Masse kg	Code
8-10	16	4	8	4	5	M4 X 0,7	11	8	0,007	MF - 15008
12-16	24	6	12	6	7	M6 X 1	16	12	0,019	MF - 15012
20	32	8	16	8	10	M8 X 1,25	22	16	0,046	MF - 15020
25	40	10	20	10	16	M10 X 1,25	26	20	0,09	KF - 15032

Rotule femelle de tige autolubrifiante en acier zingué


	.,,	а	СН	KK	НА	НВ	нс	HD	HE	HF		
	Vér. Ø		<u></u>		Н7			0 -0,12			Masse kg	Code
	8-10	13°	9	M4 x 0,7	5	27	8	9	10	7,7	0,018	MF - 17008
1	2-16	13°	11	M6 x 1	6	30	9	10	12	9	0,026	MF - 17012
	20	14°	14	M8 x 1,25	8	36	12	12	16	10,4	0,046	MF - 17020
	25	13°	17	M10 x 1,25	10	43	14	14	20	12,9	0,076	KF - 17032

Embout rotulé oscillant

	Vér.	СН	СН1	IA	KK	IH	IB	ID	IE	IF	IG	Masse	Code
	Ø	<u></u>	<u></u>			±0,3						kg	
	12-16	11	8	30°	M6 x 1	12,2	22	11	55,2	28	15	0,04	MF - 22016
	20	14	10	30°	M8 x 1,25	16	28	12	65	32	16	0,075	MF - 22020
Ī	25	17	11	30°	M10 x 1,25	19,5	32	15	74,5	35	18	0,12	KF - 22025

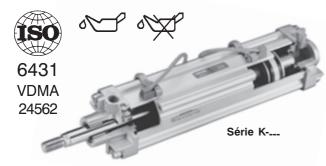
Embout rotulé oscillant d'équerre

Vér.	СН	CH1	LG	KK	IB	ID	LA	I R	ıc	LD	l F	ıF	Masse	Code
 Ø	J N	h		14.14	נ	יב	±0,3	1				i	kg	0000
12-16	11	8	50°	M6 x 1	22	11	11	26	14	35,5	30	40	0,037	MF - 23012
 20	14	10	50°	M8 x 1,25	28	12	14	31	17	42,5	36	48	0,067	MF - 23020
25	17	11	50°	M10 x 1,25	32	15	17	37	21	50,5	43	57	0,11	KF - 23025

Les vérins pneumatiques UNIVER, d'après les normes ISO 6431 et VDMA 24562, mettent à profit les améliorations nées grâce aux recherches de ces dernières années; en effet ils sont indiqués à satisfaire pleinement même les utilisateurs les plus exigeants. Le fonctionnement avec de l'air non lubrifié qui permet l'emploi dans de vastes secteurs industriels en pleine observation de la protection de l'environnement revête une importance certainement pas négligeable et la construction robuste avec ses composants soigneusement sélectionnés y confèrent des caractéristiques fonctionnelles élevées ainsi qu'une longue durée de vie.

CARACTERISTIQUES TECHNIQUES

Pression de fonctionnement: 1,5 ÷ 10 bar


Température ambiante: -20 ÷ 80°C.

Fluide: air comprimé, avec ou sans lubrification

Chemise en aluminium avec anodisation intérieure et extérieure

et tige en acier chromé de série.

Alésages: série KD 32 ÷ 125 chemise profilée d'aluminium; avec profils pour les capteurs encastrés, magnétique de série série K 32 ÷ 200 chemise en profilé d'aluminium; Ø 160 – 200 avec chemise tubulaire en aluminium et tirants en acier, version magnétique sur demande.

Capteur magnétique encastré série DF-... pour série KD Bande pour protéger le fil du capteur magnétique pour série KD, réf. DHF-002100.

Capteur magnétique série DH-... pour série K (section accessoires page 2) Accessoires à partir de page 15.

Options

- anneau magnétique en plastoferrite
- bloqueur de tige Ø 32÷125 mm avec tige en acier chromé seulement (section High-Tech page 3)
- unité de guidage Ø 32 ÷100 mm (section High-Tech page 36)
- vérins avec coussinet en bronze rigide, en tandem, à plus positions, et dos à dos (page 13).

Détails de construction

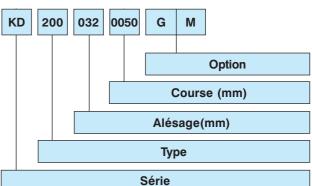
Chemise en profilé extrudé en alliage d'aluminium renforcé antitorsion. Anodisation interne et externe épaisseur 15 micron.

Têtes et fonds en alliage d'aluminium moulé sous pression fixés par des vis autotaraudeuses en acier dans les trous de la chemise.

Amortissement pneumatique réglable standard avec l'effet d'une efficace décélération du piston.

Butoirs mécaniques de fin de course en plastique; ils éliminent les sollicitations mécaniques et réduisent le bruit (< 50 dB).

Piston en aluminium moulé sous pression et guidage en résine acétale avec anneau magnétique permanent en plastoferrite (sur demande pour version magnétique).


Les joints du piston et les amortisseurs sont en nitrile résistant à l'usure et permettant una utilisation avec ou sans lubrifiant: la forme à lèvre double assure un rattrapage automatique de l'usure.

Tige en acier inox durci en surface (série K-KD100) ou en acier chromé (série K-KD200) avec Ra 0,2 micron, fournie avec écrou.

Douille de guidage tige autolubrifiante et avec alignement automatique original UNIVER. Pour des emplois spéciaux sont disponibles, sur demande, des coussinets en bronze rigides.

Les vérins \varnothing 125-160-200 sont équipés de série avec des coussinets en bronze rigides.

Codification

Série KD-...

SÉRIE

KD = Ø 32÷125 mm magnétique de série

K = Ø 32÷200 mm magnétique sur demande

TYPE

- 1 0 0 D.E. Double effet tige inox
- L1 , 0 , 1 D.E. Double effet tige inox traversante
- 1,6,0 S.E. Simple effet tige rentrée inox course max. 50 mm
- 1,7,0 S.E. Simple effet tige sortie inox course max. 50 mm
- 2,0,0 D.E. Double effet tige chromée
- **2**,6,0 **S.E.** Simple effet tige rentrée chromée course max. 50 mm
- [2,7,0] S.E. Simple effet tige sortie chromée course max. 50 mm

ALÉSAGE

Ø 032 - 040 - 050 - 063 - 080 - 100 - 125 - 160 - 200

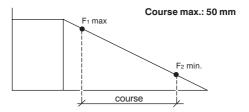
COURSE

Courses standard en mm: 0025 - 0050 - 0075 - 0080 - 100 0125 - 0150 - 0160 - 0175 - 0200 - 0250 - 0300 - 0320 - 0350 0400 - 0450 - 0500 - 0600 - 0700 - 0800 - 0900 - 1000

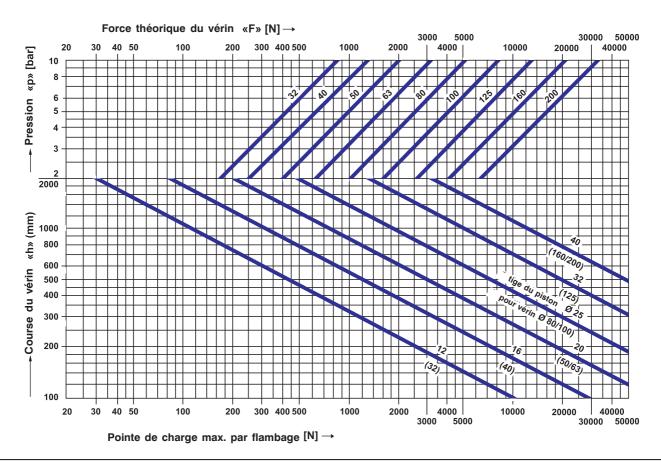
OPTION

- pour utilisation avec bloqueur de tige avec saillie réduite.
- **G** = pour utilisation avec bloqueur de tige avec saillie ISO
- **M** = version magnétique.

		théoriqu on de se					l		
Vé		face	Pre	ession	de serv	vice (b	ar)	Longueur	Energie cinétique max. absorbable
Ø	utile	(mm²)	2	4	6	8	10	(mm)	(Nm)
32	poussée traction	804 691	161 138	322 276	482 414	643 553	804 691	18	1,8
40	poussée traction	1256 1056	251 211	502 422	754 633	1005 844	1256 1055	24	2,5
50	poussée traction	1962 1649	393 330	785 660	1178 990	1570 1320	1963 1650	24	4,5
63	poussée traction	3116 2802	623 560	1246 1120	1869 1680	2493 2240	3116 2800	30	8
80	poussée traction	5024 4533	1005 907	2010 1814	3014 2722	4019 3629	5024 4536	30	12
10	0 poussée traction	7850 7359	1570 1472	3140 2944	4710 4416	6280 5888	7850 7360	35	21
12	5 poussée traction	12266 11462	2453 2294	4906 4588	7359 6882	9812 9176	12266 11470	35	36
16	0 poussée traction			8038 7540		16077 15080		45	52
20	o poussée traction				18840 18086			45	95

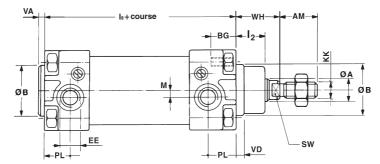

Dans le cas des vérins pneumatiques avec tige traversante la force théorique à considérer dans les deux directions est toujours identique à la valeur « en traction » indiquée dans le tableau. Les valeurs du tableau sont des valeurs théoriques et dans la pratique elles doivent être réduites en tenant compte du poids et des frottements de coulissement des parties mobiles (\sim -10%).

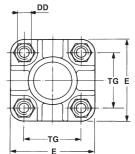
Vérin simple effet

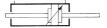


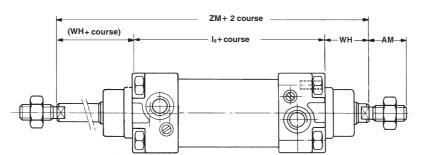
Forces théoriques de retour (N)

orce max. ressort avec course 0	Force min. ressort avec course 50
52	28
70	42,5
98	48
98	48
140	80
140	80
235	175
	52 70 98 98 140 140


Développement des forces théoriques de poussée en fonction de la pression et courses admissibiles en fonction du point de charge max.






Vérin avec amortissement pneumatique Ø 32 ÷ 200

Tolérances nominales sur la course

Vér Ø	Courses (mm)	Tolérances sur la course (mm)
32 40	jusqu'à 500	+ 2
50	de 501 à 1.250	+ 3,2 0
63	jusqu'à 500	+ 2,5 0
100	de 501 à 1.250	+ 4
125	jusqu'à 500	+ 4
160 200	de 501 à 1.250	+ 5

Vér.	a	Α	AM	В	ВG	DD	Е	EE			8	KK	м	PL	sw	Т	G	VD	VA	wн	ZM
vei.	2	^	(Note 1)	e11	ВС	טט		(Note 2)	1 2	Nom.	Tol.	(Note 1)	IVI	FL		Nom.	Tol.	VD	VA	****	ZIVI
32		12	22	30	14	M6	48	G 1/8	16	94	±0,4	M10 x 1,25	4,5	15	10	32,5	±0,5	5	3	26	146
40		16	24	35	14	M6	54	G 1/4	20	105	±0,7	M12 x 1,25	5	18	13	38	±0,5	6	4	30	165
50		20	32	40	16	M8	67	G 1/4	26	106	±0,7	M16 x 1,5	6	18	17	46,5	±0,6	6	4	37	180
63		20	32	45	16	M8	78	G 3/8	26	121	±0,8	M16 x 1,5	8	21,5	17	56,5	±0,7	6	4	37	195
80		25	40	45	16	M10	97	G 3/8	32	128	±0,8	M20 x 1,5	7,5	21,5	22	72	±0,7	8	5 🔳	46	220
100)	25	40	55	16	M10	115	G 1/2	35	138	±1	M20 x 1,5	9	21,5	22	89	±0,7	8	6 ■	51	240
125	5	32	54	60	20	M12	140	G 1/2	45	160	±1	M27 x 2	11	24,5	27	110	±1,1	10	7	65	290
160	*	40	72	65	25	M16	180	G 3/4	50	180	±1,1	M36 x 2	14	29	36	140	±1,1	10	6	80	340
200	*	40	72	75	25	M16	220	G 3/4	60	180	±1,1	M36 x 2	14	29	36	175	±1,1	12	6	95	370

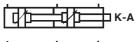
NOTE 2: Les cotes "EE" en pouces sont conformes à la norme ISO 228/1.

Masse vérins série K

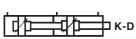
Vérin Ø	Vérin couse 0 (kg)	augment. par mm de course (g)	parties mobiles course 0 (kg)	augment. par mm de course (g)	Vérin course 0 (kg)	augment. par mm de course (g)	parties mobiles course 0 (kg)	augment. par mm de course (g)
32	0,51	2,35	0,13	0,9	0,64	3,24	0,20	1,8
40	0,77	3,24	0,24	1,6	0,92	4,80	0,37	3,2
50	1,21	4,75	0,43	2,5	1,51	7,22	0,64	5,0
63	1,74	5,78	0,47	2,5	2,03	8,25	0,75	5,0
80	2,74	8,64	0,95	3,9	3,26	12,50	1,37	7,8
100	3,78	10,4	1,18	3,9	4,38	14,30	1,60	7,8
125	6,59	14,8	2,18	6,3	7,80	21,10	3,20	12,6
160	14,60	16,9	4,02	9,9	16,85	26,80	5,94	19,8
200	16,50	18,5	4,78	9,9	19,90	28,40	6,80	19,8

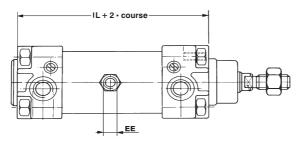
Masse vérins série KD

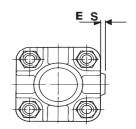
	Vérin Ø	Vérin couse 0 (kg)	augment. par mm de course (g)	parties mobiles course 0 (kg)	augment. par mm de course (g)	Vérin couse 0 (kg)	augment. par mm de course (g)	parties mobiles course 0 (kg)	augment. par mm de course (g)
	32	0,53	2,8	0,13	0,9	0,66	3,7	0,20	1,8
	40	0,80	4,0	0,24	1,6	0,95	5,5	0,37	3,2
	50	1,27	6,0	0,43	2,5	1,57	8,5	0,64	4,9
	63	1,76	6,2	0,47	2,5	2,05	8,7	0,75	4,9
	80	2,86	10,8	0,95	3,9	3,38	14,7	1,37	7,7
٠	100	3,95	13,4	1,18	3,9	4,55	17,3	1,60	7,7
	125	6,87	18,6	2,18	6,3	8,08	24,9	3,20	12,6


NOTE 1: Les dimensions "KK" et "AM" correspondent au type ISO 4395 "long".

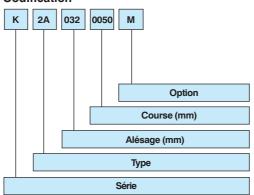
■ Cotes à normes, seulement sur demande


* Vérins Ø 160 et Ø 200 version avec chemise tubulaire en aluminium et tirants en acier.


Vérin tandem



Type de vérin caractérisé par deux pistons solidaires grâce auxquels les forces de poussée sont doublées par rapport à un vérin ISO du même alésage (tableau page 11).



Vér. Ø	EE	L	S (max)
32	G 1/8	169	3
40	G 1/4	189	5
50	G 3/8	175	4
63	G 3/8	195	7
80	G 1/2	211	6
100	G 1/2	224	9
125	G 1/2	251	9

Codification

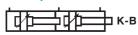
SÉRIE

K = Vérin pneumatique ISO 6431 et VDMA 24562
 KD = Vérin pneumatique ISO 6431 et VDMA 24562
 magnétique de série

TYPE

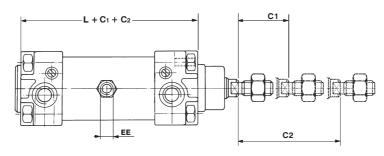
Tige inox

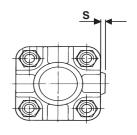
- 1A Double poussée seulement pour tige sortie
- 1D Double poussée seulement pour tige rentrée

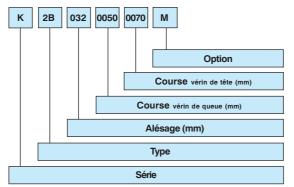

Tige chromée

- 2A Double poussée seulement pour tige sortie
- 2D Double poussée seulement pour tige rentrée

ALÉSAGE


M = Magnétique sur demande pour série K


Vérin tandem à deux positions


Type de vérin caractérisé par deux tiges indépendantes qui permettent de réaliser un positionnement double dont les forces de poussée sont identiques è celles d'un vérin ISO du même alésage (tableau page 11).

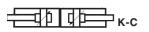
Vér. Ø*	EE	L (mm)	S (max)
32	G 1/8	166	3
40	G 1/4	186	5
50	G 1/4	172	4
63	G 3/8	192	7
80	G 3/8	208	6
100	G 1/2	221	9
125	G 1/2	248	9

Codification

SÉRIE

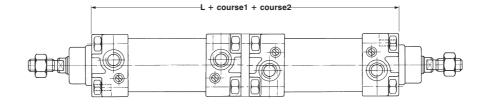
 K = Vérin pneumatique ISO 6431 et VDMA 24562
 KD = Vérin pneumatique ISO 6431 et VDMA 24562 magnétique de série

TYPE

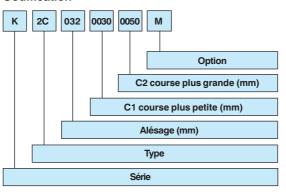

- **1B** vérin tandem à deux positions double effet tige mâle en acier inox
- **2B** vérin tandem à deux positions double effet tige mâle en acier chromée

OPTION

M = Magnétique sur demande pour série K



Vérin dos a dos



Type de vérin caractérisé par l'union de deux vérins, dans lesquels les tiges bougent en directions opposées. Les valeurs de poussée sont identiques à celles d'un vérin traditionnel (tableau page 11).

Vér. Ø*	L
32	194
40	220
50	222
63	252
80	266
100	288
125	334
160	378
200	382

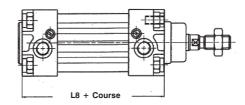
Codification

SÉRIE

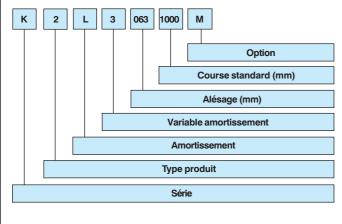
K = Vérin pneumatique ISO 6431 et VDMA 24562
 KD = Vérin pneumatique ISO 6431 et VDMA 24562
 magnétique de série

TYPE

- 1C Double effet vérin dos à dos tige mâle en acier inox
- 2C Double effet vérin dos à dos tige mâle en acier chromèe


OPTION

M = Magnétique sur demande pour série K


Vérins pneumatiques - avec amortissement long

Type de vérins Ø 40-50-63-80 mm dérivé de la série K et KD, fourni avec amortissement interne long à utiliser pour ouvrir et fermer des cloisons ou dans les secteurs dans lesquels il faut disposer d'une décélération progressive et constante, plus contrôlée par rapport à un vérin traditionnel. Les dimensions (à l'exception de celles indiquées) et les accessoires ne changent pas.

		Longueur amortiss.										
	Ø	75	100	150	200							
		L8 + Course										
ı	40	182	232	332	432							
ĺ	50	178	228	328	428							
	63	185	235	335	435							
	80	190	240	340	440							

Codification

SÉRIE

 K = Vérin pneumatique ISO 6431 et VDMA 24562
 KD= Verin pneumatique ISO 6431 et VDMA 24562 magnetique de série

TYPE

- 1 = DE Tige en acier inox
- 2 = DE Tige en acier chromé

AMORTISSEMENT

L = Long

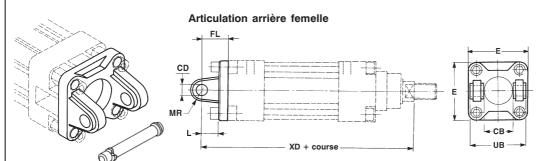
VARIABLE AMORTISSEMENT

- **1** = 075 mm
- **2** = 100 mm
- **3** = 150 mm
- **4** = 200 mm

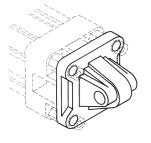
ALÉSAGE

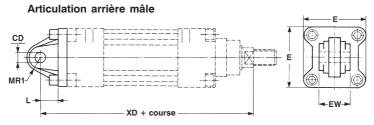
040-050-063-080 mm

COURSE

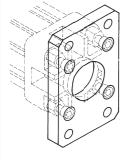

une course minimale de trois fois supérieure à la longueur de l'amortissement conseillée.

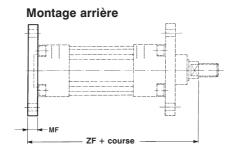
OPTION

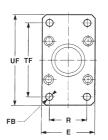

M = magnétique sur demande pour série K



Vér. Ø	Code	Masse kg
32	KF-10032A	0,06
40	KF-10040A	0,08
50	KF-10050A	0,15
63	KF-10063A	0,25
80	KF-10080A	0,36
100	KF-10100A	0,6
125	KF-10125A	1,8
160	KF-10160A	2,4
200	KF-10200A	3,5

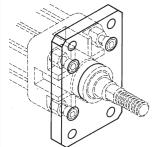

Vér. Ø	Code	Masse kg
32	KF-11032	0,08
40	KF-11040	0,1
50	KF-11050	0,17
63	KF-11063	0,25
80	KF-11080	0,42
100	KF-11100	0,66
125	KF-11125	1,5
160	KF-11160	2,3
200	KF-11200	3,5

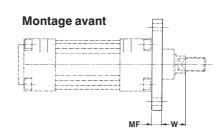

Axe voir page 18-I.


Bride avant – arrière en acier zingué, ISO MF1-MF2 (sur demande à normes VDMA)

Vis de fixation voir page 18

6431 **VDMA** 24562

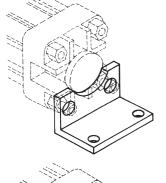


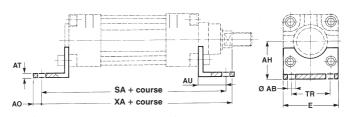


Vérin Ø	Code	Masse kg
32	KF-12032	0,2
40	KF-12040	0,25
50	KF-12050	0,5
63	KF-12063	0,65
80	KF-12080	1,5
100	KF-12100	2,2
125	KF-12125	4,1
160	KF-12160	7

KF-12200 12,4

200

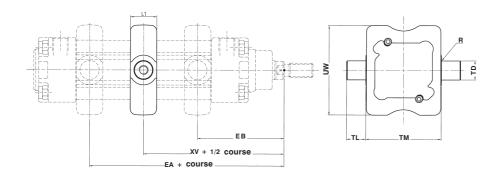



	Dimensions articulation ISO MP2-MP4												Dimensions bride ISO MF1-MF2									
Vér.	СВ	CD	E	E	W	FL	L	MR	MR1*	UB	>	Œ	E	FB	MF	R	TF	UF	v	v	Z	ZF.
Ø	H14	H9		Nom.	Tol.	±0,2	(min)	(max)		h14	Nom.	Tol.		H13	±0,2	JS14	JS14		Nom.	Tol.	Nom.	Tol.
32	26	10	48	26		22	12	11	15*	45	142	±1,25	45	7	10	32	64	80	16	±1,6	130	±1,25
40	28	12	54	28		25	15	13	18*	52	160	±1,25	52	9	10	36	72	90	20	±1,6	145	±1,25
50	32	12	65	32	-0,2	27	15	13	20*	60	170	±1,25	65	9	12	45	90	110	25	±1,6	155	±1,25
63	40	16	75	40	-0,6	32	20	17	23*	70	190	±1,6	75	9	12	50	100	120	25	±2	170	±1,6
80	50	16	95	50		36	20	17	27*	90	210	±1,6	95	12	16	63	126	150	30	±2	190	±1,6
100	60	20	115	60		41	25	21	29,5*	110	230	±1,6	115	14	16	75	150	170	35	±2	205	±1,6
125	70	25	140	70		50	30	26	26	130	275	±2	140	16	20	90	180	205	45	±2,5	245	±2
160	90	30	180	90	-0,5 -1,2	55	35	31	30*	170	315	±2	180	18	20	115	230	260	60	±2,5	280	±2
200	90	30	220	90		60	35	31	30*	170	335	±2	220	22	25	135	270	300	70	±2,5	300	±2
* Dimens	sions no	n à noi	rmes		•																	

32	KF-13032	0,07
40	KF-13040	0,09
50	KF-13050	0,2
63	KF-13063	0,2
80	KF-13080	0,4
100	KF-13100	0,6
125	KF-13125	1,2
160	KF-13160	2,4
200	KF-13200	3,4

Vér.

Ø

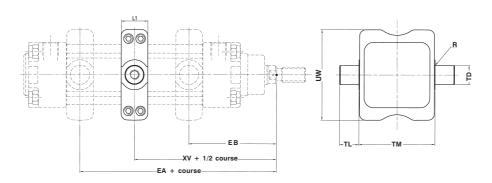

Masse

kg

Tourillon ISO MT4 avec grains de fixation pour vérins série K

(alésages 160-200 monté sur les tirants)

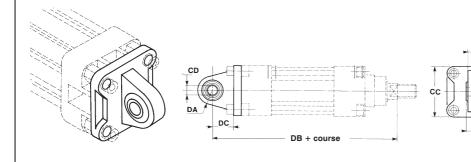
6431 VDMA 24562


Code	Masse kg
KF-14032	0,13
KF-14040	0,24
KF-14050	0,32
KF-14063	0,61
KF-14080	0,93
KF-14100	1,6
KF-14125	2,2
KF-14160	4,3
KF-14200	7,5
	KF-14032 KF-14040 KF-14050 KF-14063 KF-14080 KF-14100 KF-14125 KF-14160

NOTE: la cote XV + 1/2 course correspond à la position du tourillon au milieu du profilé du vérin.

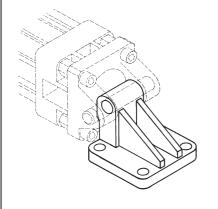
	Dimensions équerre ISO MS1												Dimensions tourillon ISO MT4 pour série K									
Vér.	AB	AH	AO	AT	AU	E	S	A	TR	Х	Ά	EA	EA EB	EB	L1	R	TD	TL	TM	UW)	(V
Ø	H13	JS15			±0,2		Nom.	Tol.	JS14	Nom.	Tol.	(max)	(min)			е9	h14	h14		Nom.	Tol.	
32	7	32	6	4	24	45	142	±1,25	32	144	±1,25	82	64	22	0,5	12	12	50	65	73	±2	
40	9*	36	8	4	28	52	161	±1,25	36	163	±1,25	93	72	22	0,5	16	16	63	75	82,5	±2	
50	9*	45	10	5	32	64	170	±1,25	45	175	±1,25	101	79	22	1	16	16	75	95	90	±2	
63	9*	50	12	5	32	74	185	±1,6	50	190	±1,6	107	88	28	1	20	20	90	105	97,5	±2	
80	12	63	15	6	41	94	210	±1,6	63	215	±1,6	123	97	28	1	20	20	110	130	110	±2	
100	14*	71	20	6	41	114	220	±1,6	75	230	±1,6	131	109	34	1	25	25	132	145	120	±2	
125	16*	90	15	8	45	140	250	±2	90	270	±2	164	126	34	1,5	25	25	160	175	145	±2,5	
160	18*	115	20	10	60	180	300	±2	115	320	±2	190	150	40	2,5	32	32	200	190	170	±2,5	
200	22*	135	30	10	70	220	320	±2	135	345	±2	205	165	40	2,5	32	32	250	240	185	±2,5	
200	22*	135	30	10	70	220	320	±2	135	345	±2	205	165	40	2,5	32	32	250	240	185	±	

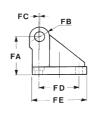
Tourillon ISO MT4 avec grains de fixation pour vérins série KD

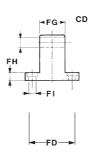

Dimensions tourillon ISO MT4 pour série KD

Vér.	EA	EB	L1	R	TD	TL	TM	UW	Х	V
Ø	(max)	(min)			(e9)	(h14)	(h14)		Nom.	Tol.
32	82	64	22	0,5	12	12	50	65	73	±2
40	93	72	22	0,5	16	16	63	75	82,5	±2
50	101	79	22	1	16	16	75	95	90	±2
63	107	88	28	1	20	20	90	105	97,5	±2
80	123	97	28	1	20	20	110	130	110	±2
100	131	109	34	1	25	25	132	145	120	±2
125	164	126	34	1,5	25	25	160	175	145	±2,5

Vér. Ø	Code	Masse Kg
32	KDF-14032	0,12
40	KDF-14040	0,24
50	KDF-14050	0,32
63	KDF-14063	0,47
80	KDF-14080	0,80
100	KDF-14100	1,50
125	KDF-14125	1,92

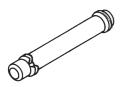

Course min. du vérin: 10 mm XV+1/2 course: position du tourillon au milieu du profilé entre fond et tête.

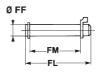

Articulation arrière mâle en aluminium moulé sous pression



Vér. Ø	Code	Masse Kg
32	KF-11032S	0,1
40	KF-11040S	0,2
50	KF-11050S	0,3
63	KF-11063S	0,35
80	KF-11080S	1,6
100	KF-11100S	0,7

Articulation arrière d'équerre à 90° en aluminium moulé sous pression




Vis de fixation voir page 18

	Vèr. Ø	Code	Masse Kg
	32	KF-19032	0,09
	40	KF-19040	0,12
	50	KF-19050	0,20
	63	KF-19063	0,32
Ì	80	KF-19080	0,58
	100	KF-19100	0,91

Axe en acier zingué avec 2 circlips

Vér. Ø	Code	Masse kg
32	KF-18032	0,03
40	KF-18040	0,05
50	KF-18050	0,05
63	KF-18063	0,12
80	KF-18080	0,15
100	KF-18100	0,29
125*	KF-18125	1,53
160*-200*	KF-18160	1

^{*} Axes pour réf. KF10...

	D	imens	ions a	rticula	tion a	rrière	mâle	.	Dir	Dimensions articulation arrière d'équerre à 90°									Dimensions axe		
Véi	. Ø	СС	CD H9	DA	DB	DC	DE	DF	CD H9	FA	FB	FC	FD	FE	FG	FH	FI	FF f8	FL	FM	
3	2	48	10	15	142	14	10,5	14	10	32	10	1,2	32,5	49	26	10	6,4	10	53	46	
4	0	54	12	18	160	16,5	12	16	12	36	12	2,6	38	55	28	10	6,4	12	61,3	53	
5	0	65	12	20	170	17,5	12	16	12	45	12	0,3	46,5	67	32	12	8,4	12	69	61	
6	3	75	16	21	190	21,5	15	21	16	50	16	3,3	56,5	73	40	12	8,4	16	80,5	71	
8	0	95	16	27	210	24	15	21	16	63	16	1,0	72	97	50	14	10,5	16	100,5	91	
10	00	115	20	29,5	230	28	18	25	20	73	20	2,5	89	115	60	16	10,5	20	122,5	111	
12	25																	25	140	131	
16	60																	30	205	171	
20	00																	30	205	171	

Ecrou pour tige en acier zingué

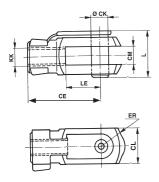
Vér. Ø	ZM	KK	OR	Code
32	M10 x 1,25	17	6	KF - 16032
40	M12 x 1,25	19	7	KF - 16040
50 ÷ 63	M16 x 1,5	24	8	KF - 16050
80 ÷ 100	M20 x 1,5	30	9	KF - 16080
125	M27 x 2	41	12	KF - 16125
160 ± 200	M36 v 2	55	14	KF - 16160

Vis de fixation accessoires

Vis à tête cylindrique UNI 5931 réf. AZ4-VN... indiquées pour fixations KF-10.../ KF-11.../KF-11...S

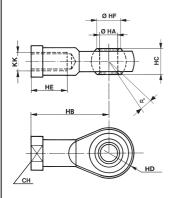
Vér. Ø	Vis	Code			
32-40	M6 x 18	AZ4-VN0618			
50-63	M8 x 22	AZ4-VN082			
80-100	M10x25	AZ4-VN1025			
125	M12x35	AZ4-VN1235			

Vis à tête cylindrique UNI 5931 et DIN 7984 Réf. AZ4-VN.../AZ4-VPA... indiquées pour fixations KF-19...

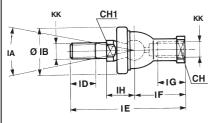

Vér. Ø	Vis 2 pièces par type	Code
32-40	M6 x 14	AZ4-VN0614
32-40	M6 x 18	AZ4-VN0618
50-63	M8 x 16	AZ4-VPA0816
50-63	M8 x 22	AZ4-VPA0822
80-100	M10x20	AZ4-VPA1020
00-100	M10x25	AZ4-VPA1025

Vis à tête cylindrique UNI 5931 Réf. AZ4-VN... indiquées pour fixations KF-12.../KF-13...

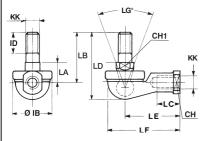
Vér. Ø	Vis	Code
32-40	M6 x 14	AZ4-VN0614
50-63	M8 x 16	AZ4-VN0816
80-100	M10x20	AZ4-VN1020
125	M12 x 25	AZ4-VN1225



Chape femelle de tige avec clip en acier zingué selon ISO 8140 avec axe


Vér.	CE	CK CL CM ER KK		KK	L	LE	Masse	Code			
Ø				B12					kg	Code	
32	40	10	20	10	16	M10 x 1,25	26	20	0,09	KF - 15032	
40	48	12	24	12	19	M12 x 1,25	32	24	0,015	KF - 15040	
50-63	64	16	32	16	25	M16 x 1,5	40	32	0,34	KF - 15050	
80-100	80	20	40	20	32	M20 x 1,5	50	40	0,67	KF - 15080	
125	110	30	55	30	45	M27 x 2	65	54	1,79	KF - 15125	
160-200	144	35	70	35	57	M36 x 2	81	72	3,87	KF - 15160	

Rotule femelle autolubrifiante en acier zingué


\/ (а	СН	KK	НА	НВ	нс	HD	HE	HF		
Vér. Ø		Å		Н7			0 -0,2			Masse kg	Code
32	13°	17	M10 x 1,25	10	43	14	14	20	12,9	0,076	KF - 17032
40	13°	19	M12 x 1,25	12	50	16	16	22	15,4	0,11	KF - 17040
50–63	15°	22	M16 x 1,5	16	64	21	21	28	19,3	0,22	KF - 17050
80–100	14°	30	M20 x 1,5	20	77	25	25	33	24,3	0,4	KF - 17080

Embout rotulé oscillant

Vér.	СН	CH1				· IA				VV	IH	IB	ID			IG	Masse	Code
Ø	<u></u>	D :	IA	KK	±0,3			IE	IF	IG	kg	Code						
32	17	11	30°	M10 x 1,25	19,5	32	15	74,5	35	18	0,12	KF - 22025						
40	19	17	30°	M12 x 1,25	22	36	17	84	40	20	0,185	KF - 22040						
 50-63	22	19	22°	M16 x 1,5	27,5	47	23	112	50	27	0,36	KF - 22050						
80-100	30	24	15°	M20 x 1,5	31,5	58	25	133	63	38	0,57	KF - 22080						

Embout rotulé oscillant d'équerre

	Vér.	СН	1 CH1					LA						Masse	
	Ø	5:	(h)	LG	KK	IB	IB ID		LB	LC	LD	LE	LF	kg	Code
	32	17	11	50°	M10 x 1,25	32	15	17	37	21	50,5	43	57	0,11	KF - 23025
	40	19	17	50°	M12 x 1,25	36	17	19	42	27	57,5	50	66	0,165	KF - 23040
	50-63	22	19	40°	M16 x 1,5	47	23	23,5	60	33	79,5	64	84	0,33	KF - 23050
	80-100	30	24	32°	M20 x 1,5	58	25	27	68	40	90	77	99	0,54	KF - 23080

Les vérins pneumatiques rotatifs ont été réalisés avec le but de transformer un mouvement rectiligne en mouvement circulaire avec des angles de rotation standard ou selon spécification du client. Ils sont construits avec des composants de grande qualité, ils présentent le rattrapage du jeu de la crémaillère et le pignon rotatif est supporté par des roulements à billes qui en font des vérins indiqués pour les applications les plus exigeantes dans le secteur industriel.

CARACTERISTIQUES TECHNIQUES

Pression de fonctionnement: $1,5 \div 10$ bar. Température ambiante: $-20^{\circ} \div +80^{\circ}$ C.

Fluide: air filtré, lubrifié ou non.

Chemise: aluminium extrudé avec anodisation interne et externe 15-18 μ m.

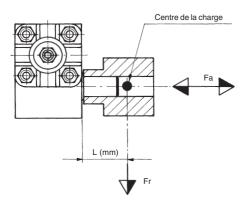
Rattrapage de jeu de la crémaillère.

Pignon rotatif sur roulements à billes.

Moment de torsion théorique à 1 bar

Multiplier la valeur du tableau par la pression de fonctionnement

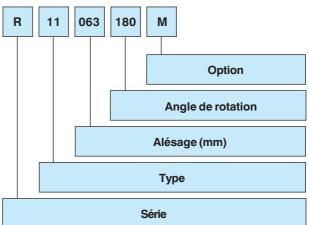
Vér. Ø	32	40	50	63	80	100	125	
Mt (Nm)	1,2	2,25	3,9	7,3	15,7	26,5	51	


Energie cinétique maximale d'absorption par l'amortissement

Le réglage de l'angle de rotation réduit l'effet de l'amortissement (R12 - R14)

Vér. Ø	32	40	50	63	80	100	125	
E₀ (Nm)	1,8	2,5	4,5	8	12	21	36	

Capteur magnétique série DH-... (section accessoires page 2)


Charges statiques admissibles sur le pignon

Charges statiques admissibles sur le pignon

Ver. Ø	32	40	50	63	80	100	125
Fa	100	100	120	120	200	250	300

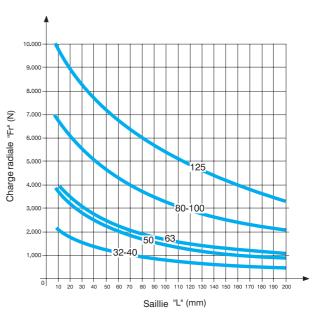
Codification

TYPE

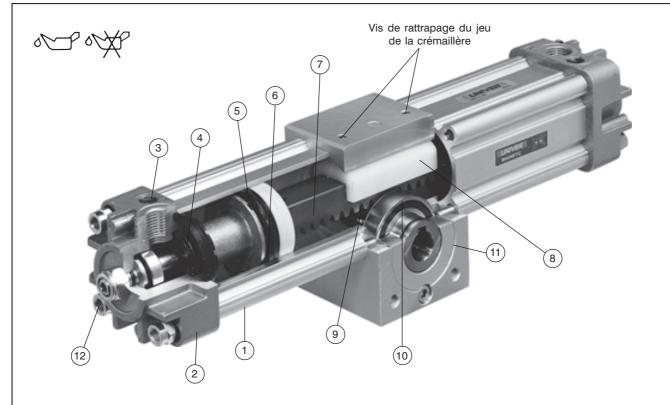
- 11 Pignon mâle sans réglage (précision $\pm 3^{\circ}$)
- 12 Pignon mâle avec réglage ± 5°
- 13 Pignon femelle sans réglage (précision ± 3°)
- 14 Pignon femelle avec réglage ± 5°

ALÉSAGE

032 - 040 - 050 - 063 - 080 - 100 - 125 mm


ANGLE DE ROTATION

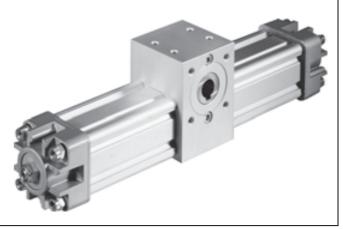
90° - 180° - 270° - 360°


OPTION

M = version magnétique

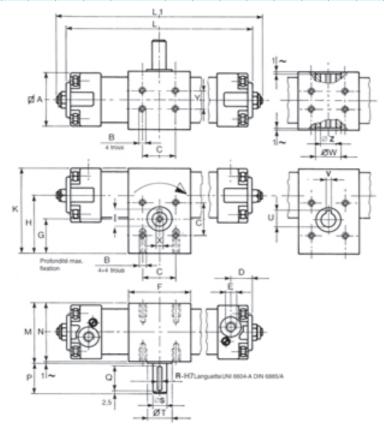
Fr = Charges radiales max (N) avec Fa = 0 en fonction de la saillie L

Détails de construction


- (1) Chemise en alliage d'aluminium extrudé avec design nervuré antitorsion, avec anodisation interne et externe 15÷18 micron.
- (2) Fonderies avant et arrière en alliage d'aluminium moulé sous pression fixées au corps central avec des tirants et des douilles.
- (3) Amortissement pneumatique réglable permettant une décélération efficace du piston.
- (4) Joints entre fonderie-chemise (butoirs élastiques)
- (5) Piston articulé en alliage d'aluminium moulé sous pression et guidages en résine acétale équipé avec anneau magnétique en plastoferrite (sur demande).
- 6 Joints entre piston et amortissement en composé nitrile antiusure pouvant fonctionner avec ou sans lubrification; la forme à double lèvre permet le rattrapage continu de l'usure
- 7 Crémaillère en acier normalisé rectifié avec système de rattrapage de jeu
- (8) Guidage de la crémaillère avec rattrapage de jeu
- 9 Pignon en acier nitruré
- (10) Roulements à billes en support du pignon, pour Ø 32 roulements en bronze-teflon
- (1) Corps central en aluminium
- Vis de réglage de l'angle de rotation, avec angle de rotation ± 5° série R12 14. (Il est recommandé de ne pas effectuer ce réglage lorsque le vérin est sous pression).

Vérins rotatifs avec :

pignon mâle


pignon femelle

Cotes d'encombrement base

Vér.	Α	В	С	D	Е	F	G	н		к	М	N	P	Q	R	S	т	U	٧	w	Y	Υ	Z
Ø	ζ	ם	±0,1		_	•	G		•	ı	IVI	14	Г	3	£	g 6	•	U	М7	٧٧	X	±0,1	Н7
32	48	M6	33	18	G1/8	50	25	46,5	16	71,5	51	50	30	25	5	14	25	16,3	5	25	M5	18	14
40	54	M6	40	22	G1/4	60	30	54,5	16	82	61	60	30	25	5	14	25	16,3	5	25	M5	22	14
50	67	M8	50	22	G1/4	70	32,5	60,5	21,5	94	66	65	40	35	6	19	30	21,8	6	30	M6	25	19
63	78	M8	60	25,5	G3/8	75	37	70,8	27	110	76	75	40	35	8	24	30	21,8	6	30	M8	35	19
80	97	M10	80	27	G3/8	99	50	93,5	31	142	100	99	50	45	8	28	45	27,3	8	45	M8	50	24
100	115	M10	80	27,5	G1/2	115	54	99	41	156,5	116	115	50	45	10	38	50	31,3	8	50	M10	60	28
125	140	M12	90	31,5	G1/2	125	60	118	41	188	141	140	50	45	10	38	60	31,3	8	60	M10	70	28

Cotes d'encombrement L - L1 et poids avec rotations standard

 L_1 : encombrement vérin avec réglage (R12 - R14) L : encombrement vérin sans réglage (R11 - R13)

	١	Rotation 90°				Rotation 180°			l	Rota	ition 270	0		Rota	tion 360	0	
V	ér. Ø	L ₁	L	masse er Pignon måle	Ng avec Pignon femelle	L ₁	L	masse er Pignon måle	Ng avec Pignon femelle	L ₁	L	masse en Pignon måle	Kg avec Pignon femelle	L ₁	L	masse er Pignon måle	Kg avec Pignon femelle
3	2	234	206	1,300	1,200	282	254	1,420	1,320	330	302	1,540	1,440	378	348	1,660	1,560
4	0	278	246	2,010	1,900	336	304	2,210	2,900	394	360	2,390	2,280	450	418	2,580	2,470
5	0	308	268	3,070	2,840	372	332	3,340	3,110	436	394	3,610	3,380	498	458	3,880	3,650
6	3	356	310	4,990	4,640	432	386	5,500	5,170	508	460	6,010	5,700	582	536	6,520	6,230
8	0	426	376	9,840	9,220	526	476	10,840	10,230	626	574	11,840	11,240	726	674	12,840	12,250
10	00	456	404	13,650	12,680	564	512	14,860	13,870	672	618	16,070	15,060	778	726	17,280	16,250
12	25	520	474	23,370	22,220	654	606	25,720	24,520	786	738	28,070	26,820	918	870	30,420	29,120

Cotes d'ecombrement rotations intermédiaires

On peut obtenir les angles de rotation intermédiaires en réduisant la course du piston droit de la rotation standard immédiatement supérieure.

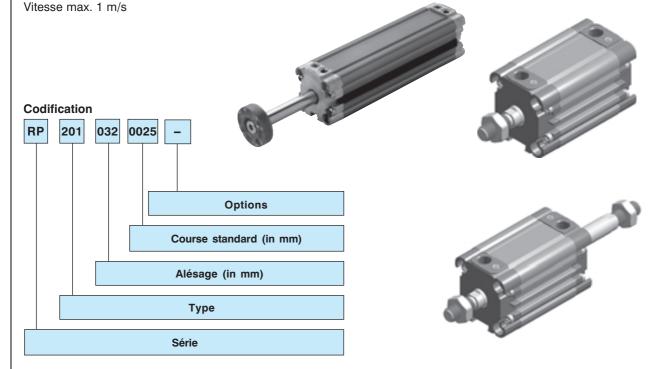
Les dimensions de la longueur L-L1 se réduisent pour chaque degré de rotation comme indiqué dans le tableau suivant :

Vérins Ø	32	40	50	63	80	100	125
Réduction mm	0,262	0,315	0,350	0,415	0,550	0,594	0,733

La longueur du profilé côté gauche garde les dimensions standard. $\left(\frac{L}{2}, \frac{L_1}{2}\right)$

Il s'agit ici de vérins avec cotes d'encombrement compactes Ø 16÷63 selon recommandations UNITOP (série RP/RO) et avec entraxes ISO (série RM/RN). Ils sont disponibles aussi dans la version avec guidage antirotation et avec piston allongé. Ce produit, le premier réalisé avec amortissement pneumatique réglable sans changements de dimensions par rapport à ceux sans amortissement, permet des cadences de fonctionnement sensiblement plus élevées ainsi qu'une réduction du bruit.

CARACTERISTIQUES TECHNIQUES


Pression de fonctionnement : 1,5 ÷ 10 bar Température ambiante: - 20 ÷ 80°C Fluide: air comprimé, lubrifié ou non Chemise en profilé extrudé en alliage d'aluminium avec tige en acier chromé ou inox.

Version magnétique de série

La version octagonale avec tige femelle est fournie avec bride montée

Options

- Tige creuse seulement pour versions avec tige traversante
- Capteur magnétique série DF-... (section accessoires page 2)
- Bande pour protéger le fil du capteur magnétique réf. DHF-002100.

SÉRIE

Chemise ronde

Série RP - compact UNITOP RU - P/7 Ø 16 ÷ 63 mm Série RM - compact ISO 21287 Ø 16 ÷ 63 mm

Chemise octagonale

Série RO - compact UNITOP RU - P/7 Ø 16 \div 63 mm Série RN - compact ISO 21287 Ø 16 ÷ 63 mm

TYPE

1... avec tige femelle en acier inox série RP - RO

2... avec tige femelle en acier chromé série RP - RO

_01 D.E. tige traversante

tige antirotation (seulement série RP)

-11 D.E. tige traversante antirotation (seulement série RP)

-20 D.E. piston allongé (Ø 32 ÷ 63 mm)

-60 S.E. tige rentrée (seulement série RP)

-70 S.E. tige sortie (seulement série RP)

3... avec tige mâle en acier inox série RM - RN

4... avec tige mâle en acier chromé série RM - RN

_00 D.E.

_01 D.E. tige traversante

_20 D.E. piston allongé (Ø 32 ÷ 63 mm) _60 S.E. tige rentrée (seulement série RM)

_70 S.E. tige sortie (seulement série RM)

ALÉSAGE

016 - 020 - 025 - 032 - 040 - 050 - 063 mm

COURSES

Simple effet

0005-0010-0015-0020-0025 mm

Double effet

0005-0010-0015-0020-0025-0030-0040-0050-0060-0080 mm

Course max. standard

Ø 16 0040 mm

Ø 20 - 25 0050 mm

Ø 32 - 63 0080 mm

Course max. avec tige guidée (sur demande)

Ø 16 0100 mm

Ø 20 - 25 0200 mm

Ø 32 - 40 0400 mm

Ø 50 - 63 0500 mm

OPTION

C = avec bride pour série RP versions 200/201/260/270 et 100/101/160/170

tige creuse seulement pour versions avec tige traversante sans bride

Détails de construction

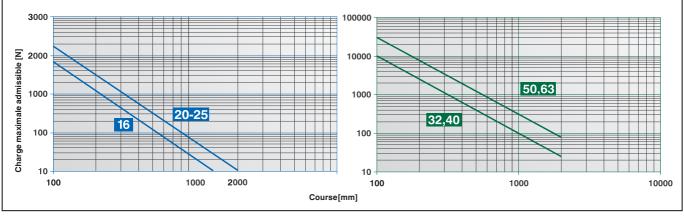
- · Chemise en alliage d'aluminium extrudé, anodisation externe et interne 15µ, profil net, pour montage de capteurs encastrés.
- Têtes et fonds zamac moulées sous pression (Ø 16 ÷ 25 mm); en alliage d'aluminium $(Ø 32 \div 63 mm).$
- Vis autotaraudeuses en acier zingué
- Tige en acier chromé
- Tige en acier inox
- Piston en aluminium.
- Guidage en résine acétale.
- Joints du piston en caoutchouc nitrile.
- Joints de tige en polyuréthane.

 Piston en aluminium D.E.
 Piston allongé double effet pour supporter une plus grande charge radiale (Ø 32÷63 mm)

Tolérance nominale sur la course

Vér.	Tolérance
Ø	mm
16 ÷ 25	+ 1,5/0
32 ÷ 50	+ 2/0
63	+ 2,5/0

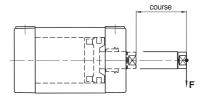
- Amortissement pneumatique réglable pour une décélération plus efficace et une réduction du bruit.
- Longueur amortissement 8 mm (Ø 16 ÷ 25 mm); $10 \text{ mm } (\emptyset 32 \div 63 \text{ mm}).$

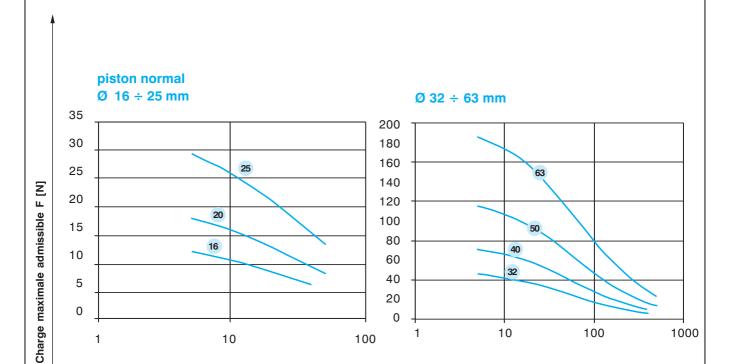

Forces théoriques [N] en fonction de la pression de fonctionnement [bar]

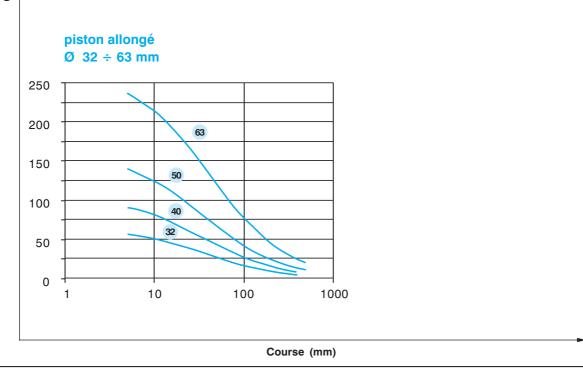
Moment de torsion max.
applicable [Nm] pour tige
antirotation série RO/RN

Vér.	Sur	face		Pression a		***			
Ø		[mm²]	2	4	6	8	10	Vér. Ø	Moment [Nm]
16	Poussée traction	201 151	40 30	80 60	121 91	161 121	201 151	16	0,5
20	Poussée traction	314 236	63 47	126 94	188 142	251 189	314 236	20	0,8
25	Poussée traction	491 412	98 82	196 165	295 247	393 330	491 412	25	1
32	Poussée traction	804 691	161 138	322 276	482 414	643 553	804 691	32	2
40	Poussée traction	1256 1143	251 228	502 457	754 685	1005 914	1256 1143	40	3
50	Poussée traction	1962 1762	393 352	785 704	1178 1057	1570 1409	1963 1762	50	5
63	Poussée traction	3116 2916	623 583	1246 1166	1869 1749	2493 2332	3116 2916	63	8

Pression de fonctionnement [har]

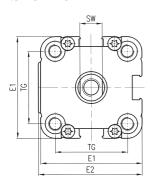

Dans le cas d'un vérin avec tige traversante, la force théorique à prendre en considération dans les deux directions est toujours identique à la valeur de «traction» indiquée dans le tableau. En pratique ces valeurs doivent être réduites en tenant compte de la masse et des frottements de coulissement de la partie mobile (~ -10%)

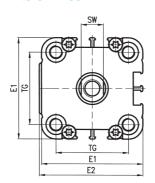


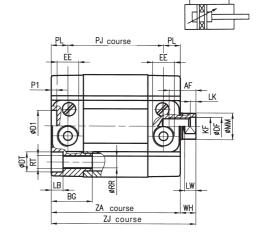

Forces théoriques de traction du ressort pour vérins simple effet

Vér. Ø	Force max. (N)	Force min. (N)	Course max. (mm)	Diminution pour chaque mm de course (N/mm)
16	14	11,8	10	0,22
20	23,5	20	10	0,35
25	23,5	20	10	0,35
32	40	24	25	0,64
40	50	35	25	0,6
50	90	49	25	1,64
63	90	49	25	1,64

Diagrammes de la charge transversale sur la tige



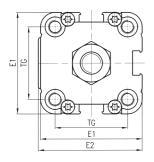



Vérin double effet série RP 200... / RP 220...* (piston allongé)

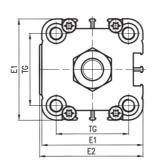
Ø 16 ÷ 25 mm

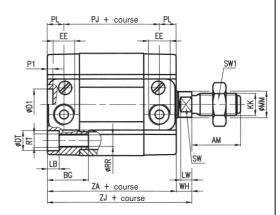
Ø 32 ÷ 63 mm

Masse RP 200...


	Vér. Ø	Course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
	16	103	1,05	15,5	0,39
1	20	135	1,45	24,5	0,62
	25	203	1,65	34,5	0,62

Masse RP 200.../RP 220...


Vér.	Course	augment.	équipage	augment.
Ø	" 0 " (g)	pour chaque mm de course (g)	mobile course "0" (g)	pour chaque mm de course (g)
32	205/291,5	2,65	60/115,5	0,9
40	305/426	3,3	75/148	0,9
50	450/676,5	4,7	125/274	1,6
63	735/1063,5	5,65	200/427	1,6


Vérin double effet tige mâle série RM 400... / RM 420...* (piston allongé)

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

Masse RM 400...

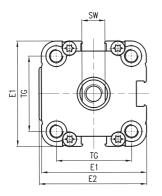
_						
	Vér. Ø	Course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)	
	16	115	1,05	27,5	0,39	
	20	157	1,45	46,5	0,62	
	25	225	1,65	56,5	0,62	

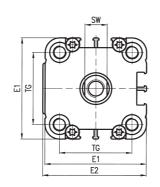
Masse RM 400.../RM 420...

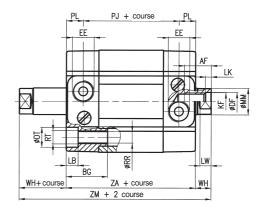
Vér.	Course	augment.	équipage	augment.
Ø	" 0 " (g)	pour chaque mm de course (g)	mobile course "0" (g)	pour chaque mm de course (g)
32	240/326,5	2,65	95/146,5	0,9
40	340/461	3,3	110/183	0,9
50	505/731,5	4,7	180/329	1,6
63	790/1198,5	5,65	255/482	1,6

Vér.	AF	АМ	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	тд	WH	ZA	ZJ
16	8	12	16	2	4,1	5,8	28	30	M5	M4	M6x1	3,2	1	4,5	8	2	21	8	3,2	M4	7	10	18	5	37	42
20	10	16	16	2	6,1	7,3	32	34	M5	M6	M18x1,25	4,2	1	4,5	10	2	21	8	4,2	M5	8	13	22	6	37	43
25	10	16	16	2	6,1	8	37	39	M5	M6	M18x1,25	4,5	1	4,5	10	2	23	8	4,2	M5	8	13	26	6	39	45
32	12	19	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	7	44	51
40	12	19	18	14	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	30	7,5	5,2	M6	10	17	42_	7	45	52
50	16	22	24	18	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	30	7,5	6,5	M8	13	19	50	8	45	53
63	16	22	24	18	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	34	7,5	6,5	M8	13	19	62_	8	49	57

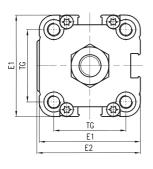
^{*} Pour les types de vérins avec piston allongé, les cotes PJ, ZA et ZJ subiront una augmentation de 20 mm (Ø 32-40 mm), de 25 mm (Ø 50-63 mm).

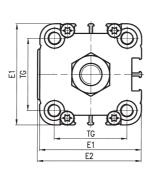


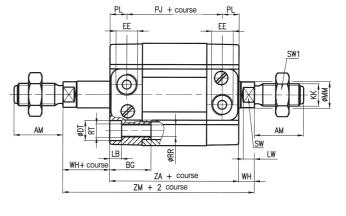

Vérin double effet, tige traversante série RP 201...


Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm






Vérin D.E. tige traversante mâle série RM 401...

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

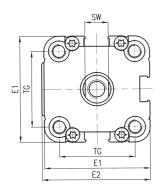
Série RP 201...

Pour version avec tige traversante creuse, ajouter suffixe H après la codification

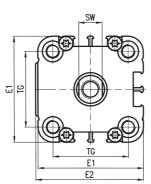
Vér.	Trou
Ø	mm
16	3,2
20-25	3,8
32-40	4,5
50-63	6

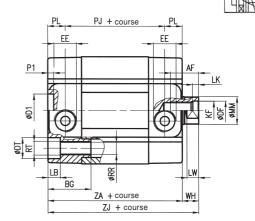
Vér. Ø	Vérin course "0" (g)	augment.pour chaque mm de course (g)	mobile course	augment. pour chaque mm de course (g)
16	105	1,45	17,5	0,78
20	138	2,07	24,8	1,24
25	206	2,27	34,8	1,24
32	230	3,55	85	1,8
40	325	4,2	100	1,8
50	490	6.3	165	3.2

Masse RP 201...

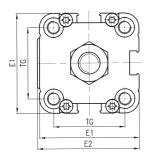

		Masse RM	401			
Vér. Ø	vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)		
16	129	1,45	41,5	0,78		
20	182	2,07	68,8	1,24		
25	250	2,27	78,8	1,24		
32	290	3,55	125	1,8		
40	390	4,2	140	1,8		
50	570	6,3	225	3,2		
63	855	7,25	300	3,2		

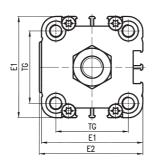
Vér. Ø	AF	ΑМ	ВG	Ø DF	Ø DT	E1	E2	EE	KF	KK	LB	LK	LW	Ø MM	PJ	PL	Ø RR	RT	sw	SW1	TG	WH	ZA	ZM
16	8	12	16	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	21	8	3,2	M4	7	10	18	5	37	47
20	10	16	16	4,1	7,3	32	34	M5	M6	M18x1,25	4,2	1	4,5	10	21	8	4,2	M5	8	13	22	6	37	49
25	10	16	16	4,1	8	37	39	M5	M6	M18x1,25	4,5	1	4,5	10	23	8	4,2	M5	8	13	26	6	39	51
32	12	19	18	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	29	7,5	5,2	M6	10	17	32,5	7	44	58
40	12	19	18	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	30	7,5	5,2	M6	10	17	42_	7	45	59
50	16	22	24	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	30	7,5	6,6	M8	13	19	50	8	45	61
63	16	22	24	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	35	7,5	6,6	M8	13	19	62	8	50	66

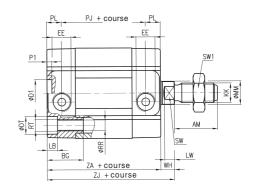



Vérin simple effet tige rentrée série RP 260...

Ø 16 ÷ 25 mm






Vérin simple effet tige rentrée mâle série RM 460...

Ø 16 ÷ 25 mm

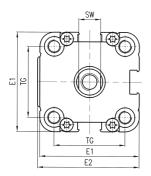
Ø 32 ÷ 63 mm

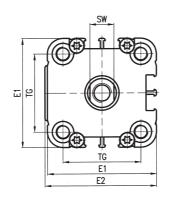
Masse RP 260

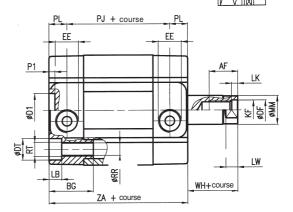
		Masse nr	200			
Vér. Ø	Vérin course"0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)		
16	103	1,05	15,5	0,39		
20	135	1,45	24,5	0,62		
25	203	1,65	34,5	0,62		
32	215	2,65	63	0,9		
40	315	3,3	81	0,9		
50	468	4,7	137	1,6		
63	753	5,65	212	1,6		

Masse RM 460...

Vér. Ø	Vérin course"0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	115	1,05	27,5	0,39
20	157	1,45	46,5	0,62
25	225	1,65	56,5	0,62
32	250	2,65	98	0,9
40	350	3,3	116	0,9
50	523	4,7	192	1,6
63	808	5,65	267	1,6

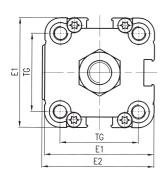

Ver. Ø	AF	ΑМ	ВG	Ø D1 D11	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	тд	WH	ZA	ZJ
16	8	12	16	2	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	2	21	8	3,2	M4	7	10	18	5	37	42
20	10	16	16	2	6,1	7,3	32	34	M5	M6	M18x1,25	4,2	1	4,5	10	2	21	8	4,2	M5	8	13	22	6	37	43
25	10	16	16	2	6,1	8	37	39	M5	M6	M18x1,25	4,5	1	4,5	10	2	23	8	4,2	M5	8	13	26	6	39	45
32	12	19	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	7	44	51
40	12	19	18	14	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	30	7,5	5,2	M6	10	17	42_	7	45	52
50	16	22	24	18	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	30	7,5	6,5	M8	13	19	50	8	45	53
63	16	22	24	18	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	35	7,5	6,5	M8	13	19	62_	8	50	58

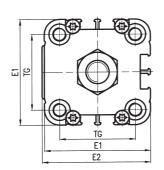


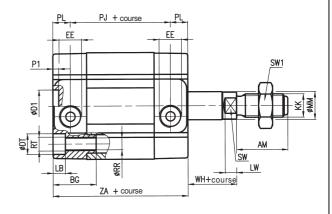

Vérin simple effet tige sortie série RP 270...

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm






Vérin simple effet tige sortie mâle série RM 470...

Ø 16 ÷ 25 mm

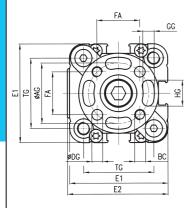
Ø 32 ÷ 63 mm

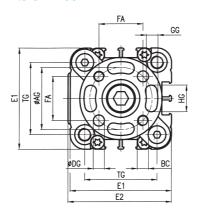
Masse RP 270...

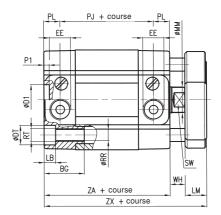
Ver. Ø	Vérin course"0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	103	1,05	15,5	0,39
20	135	1,45	24,5	0,62
25	203	1,65	34,5	0,62
32	203	2,65	63	0,9
40	302	3,3	81	0,9
50	445	4,7	137	1,6
63	730	5,65	212	1,6

Masse RM 470...

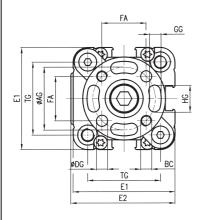
Ver. Ø	Vérin course"0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	115	1,05	27,5	0,39
20	157	1,45	46,5	0,62
25	225	1,65	56,5	0,62
32	238	2,65	98	0,9
40	337	3,3	116	0,9
50	500	4,7	192	1,6
63	785	5,65	267	1,6

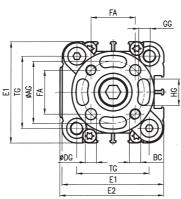

Ver.	AF	АМ	ВG	Ø D1 D11	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	та	WH	ZA
16	8	12	16	2	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	2	21	8	3,2	M4	7	10	18	5	37
20	10	16	16	2	6,1	7,3	32	34	M5	M6	M18x1,25	4,2	1	4,5	10	2	21	8	4,2	M5	8	13	22	6	37
25	10	16	16	2	6,1	8	37	39	M5	M6	M18x1,25	4,5	1	4,5	10	2	23	8	4,2	M5	8	13	26	6	39
32	12	19	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	7	44
40	12	19	18	14	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	30	7,5	5,2	M6	10	17	42	7	45
50	16	22	24	18	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	30	7,5	6,5	M8	13	19	50	8	45
63	16	22	24	18	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	35	7,5	6,5	M8	13	19	62_	8	50

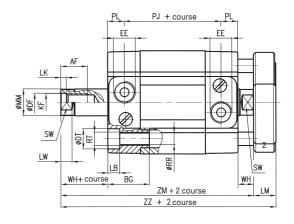



Vérin double effet avec guidage antirotation série RP 210...

Ø 16 ÷ 25 mm





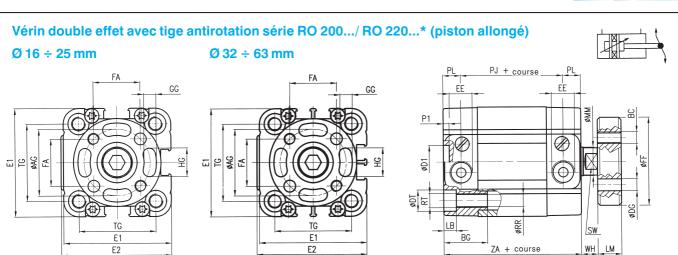

Vérin double effet tige traversante avec dispositif antirotation série RP 211...

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

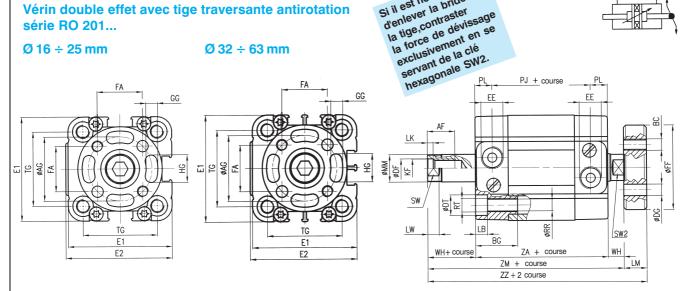
Masse RP 210..

		wasse RP	210	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	122	1,25	34,5	0,59
20	165	1,75	54,5	0,93
25	240	1,95	71,5	0,93
32	245	3,09	100	1,34
40	372	4,1	142	1,7
50	545	5,5	220	2,4
63	875	6,89	340	2,84


Masse RP 211...

Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	124	1,64	36,7	0,98
20	168	2,37	57,5	1,55
25	243	2,57	74,5	1,55
32	270	3,99	125	2,24
40	392	5	167	2,6
50	585	7,1	260	4
63	915	8.49	385	4.44

Vér. Ø	AF	AG	вс	BG	Ø D1 D11	Ø DF			E1	E2	EE	FA	GG	HG	KF	LB	LM	LK	LW	Ø MM	P1	PJ	PL	RR	RT	SW	SW2	TG	WH	ZA	ZM	ZX	ZZ
16	8	14	МЗ	16	2	4,1	3	5,8	28	30	M5	9,9	3	5	M4	3,2	6	1	4,5	8	2	21	8	3,2	М4	7		18	5	37	47	48	53
20	10	17	M4	16	2	6,1	4	7,3	32	34	M5	12	4	7	M6	4,2	8	1	4,5	10	2	21	8	4,2	М5	8		22	6	37	49	51	57
25	10	22	М5	16	2	6,1	5	8	37	39	M5	15,6	5	9	M6	4,5	8	1	4,5	10	2	23	8	4,2	М5	8	-	26	6	39	51	53	59
32	12	28	M5	18	14	8,2	5	9	46	47	G1/8	19.8	5,2	11	M8	5,3	10	2	5	12	2,5	29	7,5	5,2	М6	10	17	32,5	7	44	58	61	68
40	12	33	М5	18	14	8,2	5	9	56	57	G1/8	23,3	5,2	15	M8	5,3	10	2	5	12	2,5	30	7,5	5,2	М6	10	19	42	7	45	59	62	69
50	16	42	M6	24	18	10,2	6	11	66	67	G1/8	29,7	6,2	19	M10	6,5	12	2	6	16	2,5	30	7,5	6,6	М8	13	24	50	8	45	61	65	73
63	16	50	М6	24	18	10,2	6	11	79	80	G1/8	35,4	6,2	25	M10	6,5	12	2	6	16	2,5	35	7,5	6,6	M8	13	24	62	8	50	66	70	78


ZX + course

Vérin double effet avec tige traversante antirotation série RO 201...

Ø 16 ÷ 25 mm

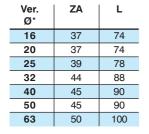
Ø 32 ÷ 63 mm

	ivias	se RO 200.	/RU 220	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	110	1,05	22,5	0,39
20	150	1,45	38,5	0,62
25	225	1,65	54,5	0,62
32	229/316,5	2,65	84/136,5	0,9
40	344/466	3,3	113,5/188	0,9
50	517/746,5	4,7	192/344	1,6
63	829/1161,5	5,65	294/525	1,6

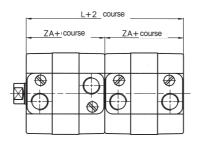
Massa PO 200 /PO 220

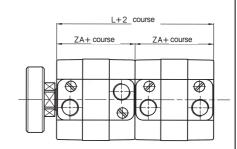
		Masse no	201	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
16	112	1,45	24,5	0,78
20	153	2,07	39	1,24
25	228	2,27	55	1,24
32	254	3,55	109	1,8
40	364	4,2	138,5	1,8
50	557	6,3	232	3,2
63	869	7,25	339	3,2

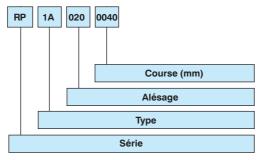
Massa PO 201


Si il est nécessaire d'enlever la bride de la tige, contraster

Vér Ø	AF	AG	вс	ВG	Ø D1 D11		Ø DG		E1	E2	EE	FA	Ø FF	GG	HG	KF	LB	LM	LK	LW	Ø MM	P1	PJ	PL	RR	RT	SW	SW2	TG	WH	ZA	ZM	ZX	ZZ
16	8	14	МЗ	16	2	4,1	3	5,8	28	30	M5	9,9	19	3	5	M4	3,2	6	1	4,5	8	2	21	8	3,2	М4	7	-	18	5	37	47	48	53
20	10	17	M4	16	2	6,1	4	7,3	32	34	M5	12	24	4	7	M6	4,2	8	1	4,5	10	2	21	8	4,2	М5	8	-	22	6	37	49	51	57
25	10	22	М5	16	2	6,1	5	8	37	39	M5	15,6	30	5	9	M6	4,5	8	1	4,5	10	2	23	8	4,2	М5	8	-	26	6	39	51	53	59
32	12	28	М5	18	14	8,2	5	9	46	47	G1/8	19.8	37	5,2	11	M8	5,3	10	2	5	12	2,5	29	7,5	5,2	М6	10	17	32,5	7	44	58	61	61
40	12	33	М5	18	14	8,2	5	9	56	57	G1/8	23,3	42	5,2	15	M8	5,3	10	2	5	12	2,5	30	7,5	5,2	М6	10	19	42	7	45	59	62	62
50	16	42	М6	24	18	10,2	6	11	66	67	G1/8	29,7	52	6,2	19	M10	6,5	12	2	6	16	2,5	30	7,5	6,6	M8	13	24	50	8	45	61	65	65
63	16	50	М6	24	18	10,2	6	11	79	80	G1/8	35,4	64	6,2	25	M10	6,5	12	2	6	16	2,5	35	7,5	6,6	М8	13	24	62_	8	50	68	70	70


^{*} Pour les types de vérins avec piston allongé, les dimensions PJ, ZA et ZX subiront une augmentation de 20 mm (Ø 32-40 mm), de 25 mm (Ø 50-63 mm).


Vérin tandem (double force de poussée et de traction)

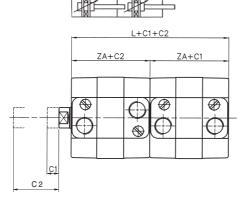


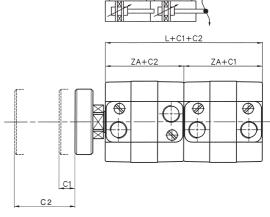
Codification

SÉRIE

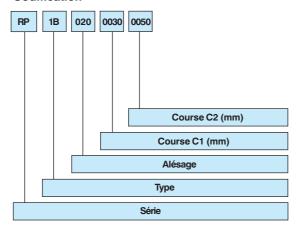
RP vérin UNITOP rond RO vérin UNITOP octagonal

TYPE


- **1A** vérin tandem tige femelle en acier inox
- **2A** vérin tandem, tige femelle en acier chromé


ALÉSAGE

016-020-025-032-040-050-063 mm


Vérin avec tiges indépendantes (à plus positions)

Ver. Ø*	ZA	L
16	37	74
20	37	74
25	39	78
32	44	88
40	45	90
50	45	90
63	50	100

Codification

SÉRIE

RP vérin UNITOP rond RO vérin UNITOP octagonal

TYPE

- **1B** Vérin avec tiges indépendantes tige femelle en acier inox
- **2B** Vérin avec tiges indépendantes tige femelle en acier chromé

ALÉSAGE

016-020-025-032-040-050-063 mm

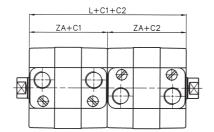
COURSE C1

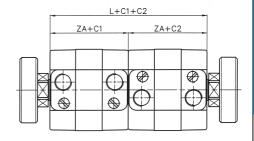
Course vérin de queue

COURSE C2

Course complète vérin de tête

^{*} Pour les dimensions manquantes voir version standard page 26 et 31. Pour d' autres types de produit contacter siège central.




Vérin dos à dos



Vér. Ø*	ZA	L
16	37	74
20	37	74
25	39	78
32	44	88
40	45	90
50	45	90
63	50	100

Codification

SÉRIE

RP vérin UNITOP rond RO vérin UNITOP octagonal

TYPE

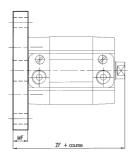
- 1C Vérin dos à dos tige femelle en acier inox
- 2C Vérin dos à dos tige femelle en acier chromé

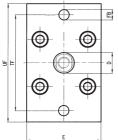
ALÉSAGE

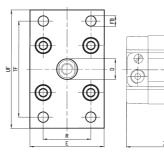
016-020-025-032-040-050-063 mm

COURSE C1

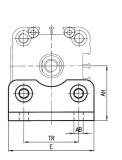
Course vérin

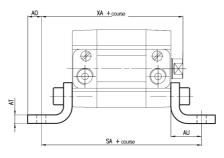

COURSE C2


Course vérin


^{*} Pour les dimensions manquantes voir version standard page 26 et 31. Pour d' autres types de produit contacter siége central.

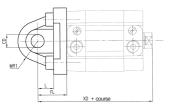
Bride avant ou arrière en acier zingué

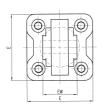




RPF-13063/0,25 KF-13063/0,25

Equerre en acier zingué

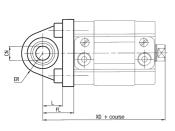

Vis de fixation voir page36 Réf. pour / masse pour... Unitop RU-P/7/Kg | ISO 21287/Kg Ø 16 RPF-13016/0,02 RPF-13020/0,03 20 25 RPF-13025/0,04 32 **RPF-13032**/0,07 **KF-13032**/0,07 **RPF-13040**/0,10 40 **KF-13040**/0,10 RPF-13050/0,15 50 KF-13050/0,15

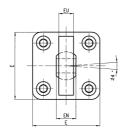

					В	Bride									Eque	erre			
Cil.	Ø D H11	E	Ø FB H13	н	MF	R Js14	TF Js14	UF	ZF	ZH	Ø AB H13	Ø AN Js15	ΑО	ΑТ	AU	Е	SA	TR	ХА
16	10	29	5,5	5	10	-	43	55	52	47	5,5	22	4,5	3	13	30	63	18	55
20	12	36	6,6	4	10	-	55	70	53	47	6,6	27	6	4	16	36	69	22	59
25	12	40	6,6	4	10	-	60	76	55	49	6,6	30	6	4	16	40	71	26	61
32	14/30	50/45	7	3	10	32	65/64	80	61	54	6.6/ <mark>7</mark>	32.25/32	8/6	5/4	18/24	50/45	80/92	32	69/75
40	14/35	60/52	9	3	10	36	82/72	102/90	62	55	6.6/9	42.5/36	8	5/4	20/28	60/52	85/101	42/36	72/80
50	18/40	68/ <mark>65</mark>	9	4	12	45	90	110	65	57	9	47/45	8/10	6/5	24/32	68/64	93/109	50/45	77/85
63	18/45	87/75	9	7/4	15/12	50	110/100	130/120	73/70	65/63	9	59.5/ 5 0	12	6/5	27/32	84/74	104/114	62/50	85/93

Les dimensions à couleur se réfèrent à la série ISO 21287

Articulation arrière mâle en aluminium moulé sous pression, ISO MP4 sans axe

Réf./Masse pour ...

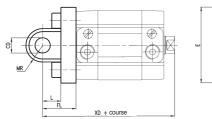


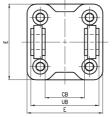


Vér Ø	Ø CD H7	E ±0,5	EW h14	FL ±0,2	L	MR1	XD	Unitop RU-P/7/Kg	ISO 21287/Kg
16	6	27	12	16	10	6	58	RPF-110	16 /0,017
20	8	34	16	20	14	8	63	RPF-110	20 /0,021
25	8	38	16	20	14	8	65	RPF-110	25 /0,027
32	10	48	26	22	12	15	73	RPF-110	32 /0,080
40	12	54	28	25	15	18	77	-	KF-11010/0,100
50	12	65	32	27	15	20	80	-	KF-11050/0,170
63	16	75	40	32	20	23	89	-	KF-11063/0,250

• Il est possible d'utiliser l'articulation mâle avec l'articulation femelle MF-21+ Ø des microvérins ISO6432

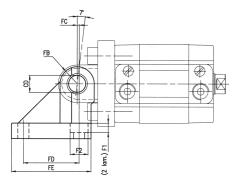
Charnière articuleé mâle en aluminium moulé sons pression Ø 32 \div 63 mm pour vérins compacts selon normes ISO

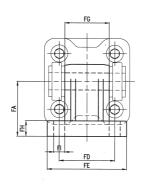



Réf./Masse pour ...

Vér. Ø	CN H9	Е	EN	ER	EU	FL	L	XD	Unitop RU-P/7/Kg ISO 21287/Kg
32	10	48	14	15	10,5	22	14	73	KF-11032S/ 0,10
40	12	54	16	18	12	25	16,5	77	KF-10040S/ 0,20
50	12	65	16	20	12	27	17,5	80	KF-10050S/ 0,30
63	16	75	21	21	15	32	21,5	90	KF-10063S/ 0,35

Articulation arrière femelle en aluminium moulé sons pression en acier zingué

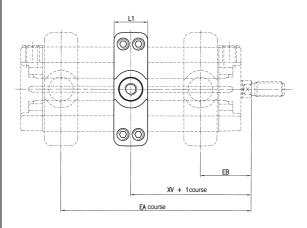


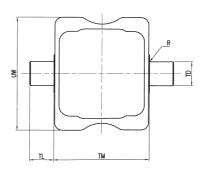

				n	ei./iv	iassi	e por	II	
Vér Ø	CB H14	C H9	Е	FL ±0,2	L	MR	UB h14	XD	Unitop RU-P/7/Kg
32	26	10	48	22	12	11	45	73	KF-10032A /0,060
40	28	12	58	25	16	12,5	52	77	RPF-10040/0,104
50	32	12	66	27	16	12,5	60	80	RPF-10050/0,142
63	40	16	83	32	21	15	70	90	RPF-10063/0,240

Réf./Masse pour									
Vér Ø	CB H14	C H9	E	FL ±0,2	L	MR	UB h14	XD	ISO 21287/Kg
32	26	10	48	22	12	11	45	73	KF-10032A/0,10
40	28	12	58	25	15	13	52	77	KF-10040A/0,20
50	32	12	66	27	15	13	60	80	KF-10050A/0,30
63	40	16	83	32	20	17	70	90	KF-10063A/0,35

• Il est possible d'utiliser l'articulation femelle aussi devant en elevant l'axe.

Centre - articulation à 90° en aluminium moulé sous pression



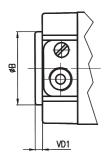


Vé Ø	. Ø CE H9	FA Js15	FB	FC	FD	FE	FG -0.2/-0.6	FH	FI	F1	F2
32	10	32	10	1,2	32,5	46,5	26	9	6,4	5,5	10,5
40	12	36	12	2,6	38	51,5	28	9	6,4	5,5	10,5
50	12	45	12	0,3	46,5	63,5	32	9	8,4	5	13,5
63	16	50	16	3,3	56,5	73,5	40	10,5	8,4	5	13,5

Vér. Ø	Code	Masse Kg
32	KF-19032	0,09
40	KF-19040	0,12
50	KF-19050	0,20
63	KF-19063	0,32

Tourillon avec grains de fixation

	Vér.	EA					TL		UW		v
	Ø	(max)	(min)	(max)	(max)	(e9)	(h14)	(h14)	(max)	Nom.	Tol.
Ī	32	24	34	22	0,5	12	12	50	65	29	±2
	40	25	34	22	0,5	16	16	63	75	29,5	±2
Ī	50	26	35	22	1	16	16	75	95	30,5	±2
	63	27	38	28	1	20	20	90	105	32,5	±2


Vér. Ø	Code	Masse Kg
32	KDF-14032	0,13
40	RPF-14040	0,24
50	RPF-14050	0,32
63	RPF-14063	0,47

Course min. du vérin : 10 mm

XV+ $\frac{1}{2}$ course: tourillon au milieu du profilé du vérin.

Anello adattatore per centraggio posteriore ISO (a richiesta)

Vér.	Ane adatta		Réf.
Ø	ØВ	VD1	nei.
32	30	3	RSF-09032
40	35	3	RSF-09040
50	40	3	RSF-09050
63	45	3	RSF-09063

Bride pour tige femelle en aluminium moulé sous pression (Ø $32 \div 63$ mm); en zamac (Ø $16 \div 25$ mm). (avec vis pour la fixation fournie de série avec les modèles de vérins octagonaux séries RO-RN). Montée sur les vérins des types RP-RM les dimensions sont les mêmes de la série RO-RN.

Bride pour tige avec guidage antirotation en aluminium moulé sous pression (Ø 32÷63mm) pour série RP 210...-RP 211... (avec vis de fixation); en zamac (Ø 16÷25 mm)

Vér. Ø	Code	Masse kg
16	RPF-28016	0,007
20	RPF-28020	0,018
25	RPF-28025	0,020
32	RPF-28032	0,024
40	RPF-28040	0,035
50	RPF-28050	0,057
63	RPF-28063	0,094

Vér. Ø	Code	Masse kg
16	RPF-29016	0,010
20	RPF-29020	0,018
25	RPF-29025	0,025
32	RPF-29032	0,026
40	RPF-29040	0,036
50	RPF-29050	0,065
63	RPF-29063	0,100

Ecrou pour tige en acier zingué

Vér. Ø	ZM	KK	OR	Code
16	M8 x 1,25	13	5	MF-16020
20-25	M10 x 1,25	17	6	KF-16032
32-40	M10 x 1,25	17	6	KF-16032
50-63	M12 x 1.25	19	7	KF-16040

Axe en acier zingué avec 2 circlips

Vér. Ø	FF f8	FL	FM	Masse kg	Code
32	10	53	46	0,03	KF-18032
40	12	61,3	53	0,05	KF-18040
50	12	69	61	0,05	KF-18050
63	16	80,5	71	0,12	KF-18063

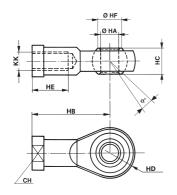
Vis de fixation accessoires

Vis à tête cylindrique UNI 5931 (sachet de 100 pièces) Réf. AZ4-VN... indiquées pour fixations série RPF-12... et RPF-13... et RPF-11...

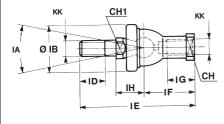
Vér. Ø	Vis	Code
16	M4 x 18	AZ4-VN0418
20-25	M5 x 18	AZ4-VN0518
32-40	M6 x 20	AZ4-VN0620
50-63	M8 x 25	AZ4-VN0825

Vis à tête cylindrique UNI 5931 Réf. AZ4-VN... indiquées pour fixations série KF-10032/RPF-10...

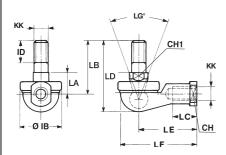
Vér. Ø	Vis	Code
32-40	M6 x 25	AZ4-VN0625
50-63	M8 x 30	AZ4-VN0830



Chape femelle de tige avec clip en acier zingué


	Vér.	CE	СК	CL	СМ	ER	KK	L	LE	Masse	Code
_	Ø				B12					kg	Code
	16	24	6	12	6	7	M6 x 1	16	12	0,019	KF-15016
	20-25	32	8	16	8	10	M8 x 1,25	22	16	0,046	MF-15020
	32-40	40	10	20	10	16	M10 x 1,25	26	20	0,090	KF-15032
•	50-63	48	12	24	12	19	M12 x 1,25	32	24	0,015	KF-15040

Rotule femelle de tige autolubrifiante en acier zingué


Vér.	а	СН	кк	НА	НВ	нс	HD	HE	HF		
Ø		S		H7		0 -0,12				Masse kg	Code
16	13°	11	M6 x 1	6	30	9	10	12	9	0,026	MF-17012
20÷25	13°	14	M8 x 1,25	8	36	12	12	16	10,4	0,046	MF-17020
32-40	13°	17	M10x 1,25	10	43	14	14	20	12,9	0,076	KF-17032
50-63	13°	19	M12 x 1,25	12	50	16	16	22	15,4	0,110	KF-17040

Embout rotulé oscillant

	Vér.	СН	CH1	I _{IA}	КК	IH	ΙB	ID	IE	IF	IG		
	Ø	<u></u>		i		0 ±0,3						Masse kg	Code
	16	11	8	30°	M6 x 1	12,2	22	11	55,2	28	15	0,04	MF-22016
ľ	20÷25	14	10	30°	M8 x 1,25	16	28	12	65	32	16	0,075	MF-22020
	32-40	17	11	30°	M10x 1,25	19,5	32	15	74,5	35	18	0,120	KF-22025
	50-63	19	11	30°	M12 x 1,25	22	36	17	84	40	20	0,185	KF-22040

Embout rotulé oscillant d'équerre

Vér.	СН	CH1	LG	KK	IB	ID	LA	LB	LC	LD	LE	l F		
ø	<u></u>	5		, and			0 ±0,3					-	Masse kg	Code
16	11	8	50°	M6 x 1	22	11	11	26	14	35,5	30	40	0,037	MF-23012
20÷25	14	10	50°	M8 x 1,25	28	12	14	31	17	42,5	36	48	0,067	MF-23020
32-40	17	11	50°	M10x 1,25	32	15	17	37	21	50,5	43	57	0,110	KF-23025
50-63	19	17	50°	M12 x 1,25	36	17	19	42	27	57,5	50	66	0,165	KF-23040

Une nouvelle série de vérins compacts pour les courses longues ou emplois lourds, équipée de série avec quidages et tiges surdimensionnés, le premier avec amortissement pneumatique réglable fourni de série sans augmentation des cotes d'encombrement. Les entraxes, diamètres de centrage et tiges sont selon spécifications ISO 6431 et VDMA 24562.

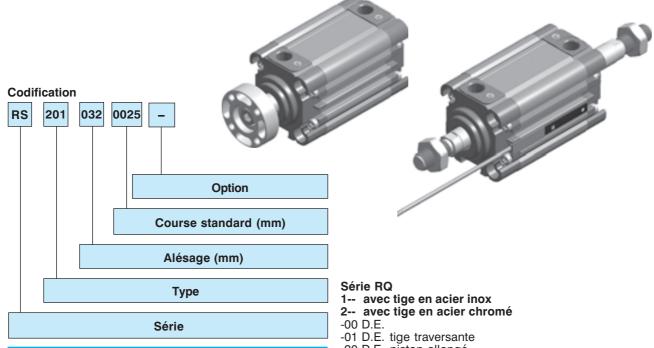
CARACTERISTIQUES TECHNIQUES

Pression de fonctionnement: 1,5 ÷ 10 bar Température ambiante: -20° ÷ 80°C Fluide: air comprimé, lubrifié ou non

Chemise en profilé extrudé en alliage d'aluminium avec

tige en acier chromé de série Guidages surdimensionnés

Amortissement pneumatique réglable de série (10 mm ~) La version avec tige antirotation (série RQ-...) est fournie


avec bride montée de série

Vitesse max.: 1 m/s

Version magnétique de série.

Options

- Capteur magnétique DF-... (section accessoires page 2).
- Bande pour protéger le fil du capteur magnétique réf. DHF - 002100.
- Bride pour série RS types _00/_01/_20/_60/_70.
- Tige creuse seulement pour versions avec tige traversante.
- Préparé pour bloqueur de tige seulement avec tige en acier chromé (voir page. 4-II).
- Vérin STRONG avec bloqueur de tige de sécurité intégré (voir page. 61-II).
- Unités de guidage seulement avec types de vérins avec piston allongé (voir page. 51-l).

SÉRIE

Vérins compacts STRONG Ø 032÷063 mm magnétiques, avec amortissement et avec guidages surdimensionnés standard: 032 - 040 - 050 - 063 mm

Chemise ronde

Série RS - compact STRONG

Chemise octagonale

Série RQ - compact STRONG tige antirotation avec bride

TYPE

Série RS

1-- avec tige en acier inox

2-- avec tige en acier chromé

-00 D.E.

-01 D.E. tige traversante

-10 D.E. tige antirotation

-11 D.E. tige traversante antirotation

-20 D.E. piston allongé

-60 S.E. tige rentrée

-70 S.E. tige sortie

3-- avec tige mâle en acier inox

4-- avec tige mâle en acier chromé

-00 D.E.

-01 D.E. tige traversante

-20 D.E. piston allongé

-60 S.E. tige rentrée

-70 S.E. tige sortie

-20 D.E. piston allongé

ALÉSAGE

COURSES

Simple effet

0005-0010-0015-0020-0025 mm

Double effet

0005-0010-0015-0020-0025-0030-0040-0050-0060

Course max. avec tige guidée (sur demande)

Ø 32 - 40 0400 mm

Ø 50 0500 mm Ø 63 0800 mm

Avec piston allongé (sur demande)

Ø 32 - 40 0800 mm

Ø 50 - 63 1000 mm

OPTION

avec bride pour série RS versions 100/101/160/170 et 200/201/260/270

tige creuse seulement pour versions avec tige traversante sans bride

préparé pour bloqueur de tige exclu vérins simple effet et seulement avec tige chromée

Détails de construction

- Chemise en alliage d'aluminium extrudé, anodisation externe et interne 15 micron, profil net, capteurs encastrés.
- Têtes et fonds en alliage d'aluminium.
- Vis autotaraudeuses en acier zingué.
- Tige en acier chromé surdimensionnée; sur demande en acier inox.
- Piston en aluminium.
- Guidage en résine acétale.
- Douilles surdimensionnées.
- Joints du piston en caoutchouc nitrile.
- Joints de tige en polyuréthane.
- Amortissement pneumatique réglable pour une décélération plus efficace et une réduction des bruits de fonctionnement.

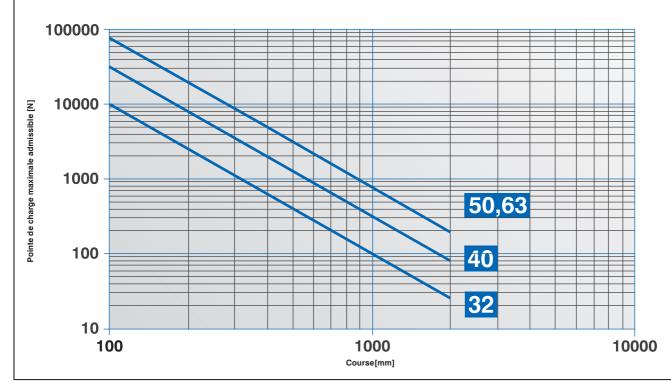
• Piston en aluminium D.E. • Piston allongé D.E. pour supporter une charge radiale plus élevée

Longueur d'amortissement 10 mm

Tolérance nominale sur

Vér.	Tolérance
Ø	mm
32 ÷ 50	+ 2/0
63	+ 2,5/0

la course


Forces théoriques [N] en fonction de la pression de fonctionnement [bar]

Moment de torsion max.
applicable [Nm] pour tige
antirotation série RQ.

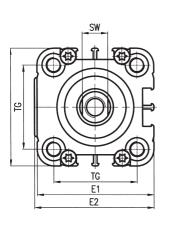
Vér.	Sur	face		Pression de fonctionnement [bar]												
Ø	utile	[mm²]	2	4	6	8	10									
32	Pousée	804	161	322	482	643	804									
	Traction	691	138	276	414	553	691									
40	Pousée	1256	251	502	754	1005	1256									
	Traction	1056	211	422	633	844	1055									
50	Pousée	1962	393	785	1178	1570	1963									
	Traction	1649	330	660	990	1320	1650									
63	Pousée	3116	623	1246	1869	2493	3116									
	Traction	2802	560	1120	1680	2240	2800									

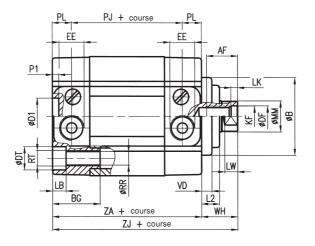
Vér. Ø	Moment [Nm]
32	2
40	3
50	5
63	8

Dans le cas d'un vérin avec tige traversante, la force théorique à prendre en considération dans les deux directions est toujours identique à la valeur de « traction » indiquée dans le tableau. En pratique ces valeurs doivent être réduites d'environ 10% en tenant compte de la masse et des frottements de coulissement des parties mobiles.

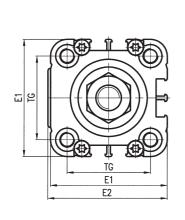
Forces théoriques de traction du ressort pour vérins types ...260.../...270...

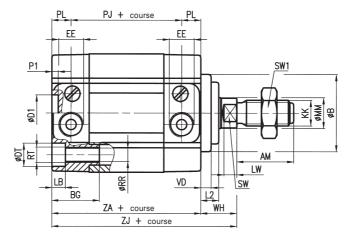
Vér. Ø	Force max. (N)	Force min. (N)	Course max. (mm)	Réduction pour chaque mm de course (N/mm)
32	40	24	25	0,64
40	50	35	25	0,6
50	90	49	25	1,64
63	90	49	25	1,64


Diagrammes de la charge transversale sur la tige



Vérin double effet série RS 200.../série RS 220...* piston allongé





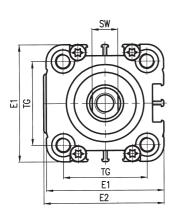
Masse RS 200.. Vér. Vérin course augment. pour équipage mobile course augment. pour "0" (g) chaque mm de chaque mm de Ø "0" (g) course (q) course (q) 32 215 2,65 70 0,9 40 347 4 110 1,6 50 520 5,6 180 2,5 63 800 6,55 260 2,5

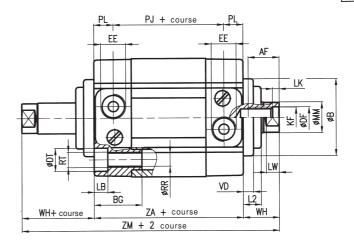
		Masse RS	220	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	301,5	2,65	121,5	0,9
40	482	4	197	1,6
50	769	5,6	327	2,5
63	1151,5	6,55	485	2,5

Vérin double effet tige mâle série RS 400.../série RS 420...* piston allongé

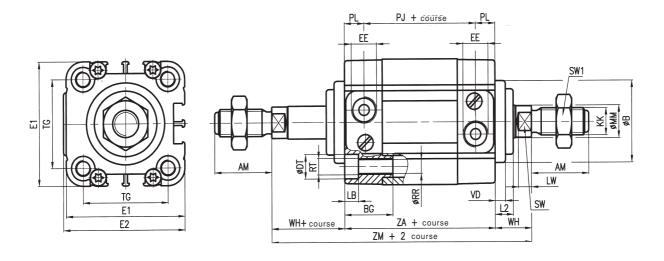
		Masse RS	400				
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)			
32	245	2,65	100	0,9			
40	392	4	155	1,6			
50	600	5,6	260	2,5			
63	880	6.55	340	2.5			

		Masse RS	420				
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)			
32	331,5	2,65	151,5	0,9			
40	527	4	242	1,6			
50	849	5,6	407	2,5			
63	1231,5	6,55	565	2,5			


Ver.	AF	АМ	Ø B	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	KK	L2	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	тg	VD	WH	ZA	ZJ
32	12	22	30	18	14	8,2	9	46	47	G1/8	M8	M10x1,2	7	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44	58
40	16	24	35	18	14	10,2	9	56	57	G1/8	M10	M12x1,2	7	5,3	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	14	45	59
50	20	32	40	24	18	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	30	7,5	6,5	M8	17	24	46,5	5	18	45	63
63	20	32	45	24	18	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	35	7,5	6,5	M8	17	24	56,5	5	18	50	68


^{*} Pour les types de vérins avec piston allongé, les cotes PJ, ZA et ZJ subiront una augmentation de 20 mm (Ø 32-40 mm), de 25 mm (Ø 50-63 mm).

Vérin double effet, tige traversante série RS 201...

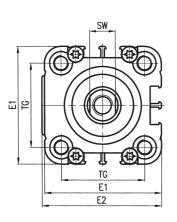


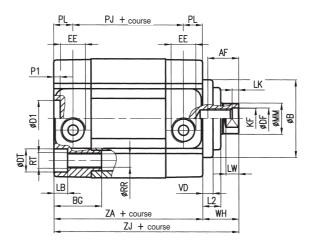
Pour les versions avec tige traversante creuse ajouter suffixe H après la codification:

Vérin	Trou
Ø	mm
32-40	4,5
50-63	6

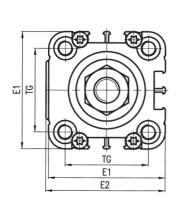
Masse Vérin course augment. pour augment. pour Vér. équipage chaque mm de course (g) mobile course "0" (g) chaque mm de course (g) "0" (g) Ø 32 96 245 3,55 1,8 40 392 5,6 151 3,2 50 596 8,1 250 5 9,05 330 63 875 5

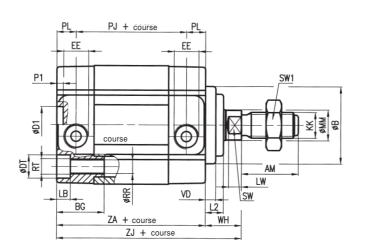
Vérin double effet tige traversante mâle série RS 401...


		wass	e				
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)			
32	305	3,55	156	1,8			
40	482	5,6	241	3,2			
50	756	8,1	410	5			
63	1035	9,05	490	5			


Vér. Ø	AF	АМ	Ø B	ВG	Ø DF	Ø DT	E1	E2	EE	KF	кк	L2	LB	LK	LW	Ø MM	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA	ZM
32	12	22	30	18	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	29	7,5	5,2	M6	10	17	32,5	4	14	44	72
40	16	24	35	18	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	30	7,5	5,2	M6	13	19	38	4	14	45	73
50	20	32	40	24	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	30	7,5	6,5	M8	17	24	46,5	5	18	45	81
63	20	32	45	24	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	35	7,5	6,5	M8	17	24	56,5	5	18	50	86

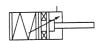
Vérin simple effet, tige rentrée série RS 260...

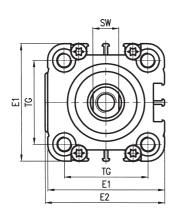


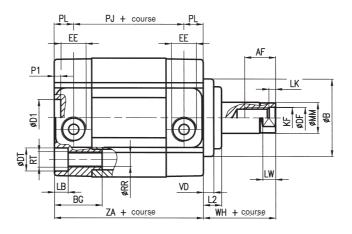


		Mass	e	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	217	2,65	73	0,9
40	350	4	116	1,6
50	525	5,6	192	2,5
63	805	6,55	272	2,5

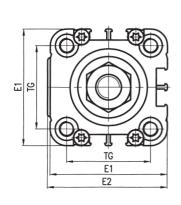
Vérin simple effet, tige rentrée mâle série RS 460...

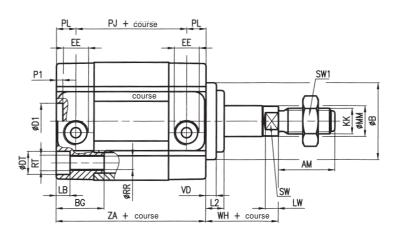



		wass	e	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	247	2,65	103	0,9
40	395	4	161	1,6
50	605	5,6	272	2,5
63	885	6,55	352	2,5


Vér Ø	AF	АМ	Ø B	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	кк	L2	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA	ZJ
32	12	22	30	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44	58
40	16	24	35	18	14	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	14	45	59
50	20	32	40	24	18	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	30	7,5	6,5	M8	17	24	46,5	5	18	45	63
63	20	32	45	24	18	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	35	7,5	6,5	M8	17	24	56,5	5	18	50	68

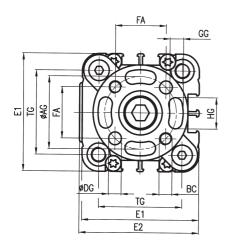
Vérin simple effet, tige sortie série RS 270...

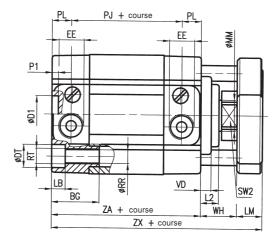




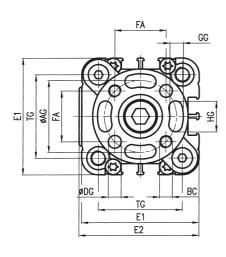
Ø "0" (g) chaque mm de mobile course chaque mm de course (g) "0" (g) course (g)														
-		chaque mm de	mobile course	augment. pour chaque mm de course (g)										
32	213	2,65	73	0,9										
40	344	4	116	1,6										
50	515	5,6	192	2,5										
63	795	6,55	272	2,5										

Vérin simple effet, tige sortie mâle série RS 470...


		Mass	е	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	243	2,65	103	0,9
40	398	4	161	1,6
50	595	5,6	272	2,5
63	875	6,55	352	2,5


Vér. Ø	AF	ΑМ	Ø B	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	кк	L2	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA
32	12	22	30	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44
40	16	24	35	18	14	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	14	45
50	20	32	40	24	18	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	30	7,5	6,5	M8	17	24	46,5	5	18	45
63	20	32	45	24	18	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	35	7,5	6,5	M8	17	24	56,5	5	18	50

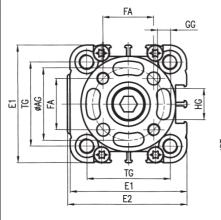
Vérin double effet avec guidage antirotation série RS 210...

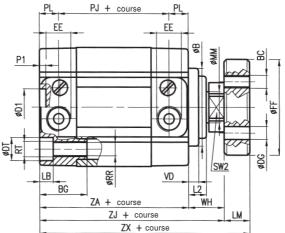


		Masse	•	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	255	3,09	110	1,34
40	414	4,8	177	2,4
50	622	6,4	282	3,3
63	952	7,79	412	3,7

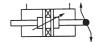
Vérin double effet, tige traversante avec guidage antirotation série RS 211...

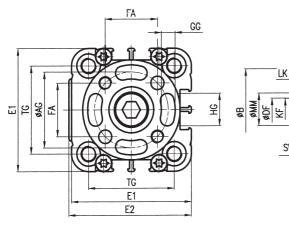
Vér. Ø	AF	Ø AG	Ø B	вс	ВG	ØD1 H11	Ø DF	Ø DG	Ø DT
	12		l .	l		14		l .	
40	16					14			9
50	20					18			11
63	20	50	45	M6	24	18	12,2	6	11

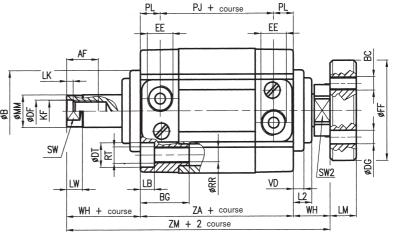

		Mass	е	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	285	3,99	136	2,24
40	459	6,4	218	4
50	698	8,9	352	5,8
63	1025	10,29	482	6,24


Vér. Ø	E 1	E2	EE	FA	GG	HG	KF	L2	LB	LM	LK	LW	Ø MM	Р1	PJ	PL	Ø RR	RT	sw	SW2	TG	VD	WH	ZA	ZM	ZX	ZZ
32	46	47	G1/8	19,8	5,2	11	M8	7	5,3	10	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44	72	68	82
40	56	57	G1/8	23,3	5,2	15	M10	7	5,3	10	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	14	45	73	69	83
			G1/8											-						24	46,5	5	18	45	81	75	93
63	79	80	G1/8	35,4	6,2	25	M12	10	6,5	12	2	6	20	2,5	35	7,5	6,6	M8	17	24	56,5	5	18	50	86	80	98

Vérin double effet avec tige antirotation série RQ 200.../ RQ 220...* piston allongé




Si il est nécessaire
enlever la bride de
enlever la bride ter
la tige, contraster
la force de dévissage
la force de de la clé
exclusivement en se
servant de la clé
hexagonale SW2.

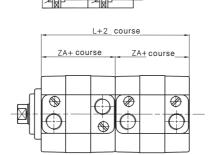

		Masse RQ	200	
Vér. Ø	Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)
32	240	2,65	94	0,9
40	386	4	148,5	1,6
50	587	5,6	247	2,5
63	894	6,55	354	2,5

Masse RQ 220.. Vér. Vérin course augment. pour équipage augment. pour "0" (g) chaque mm de mobile course chaque mm de Ø course (g) "0" (g) course (g) 32 326,5 2,65 146,5 0,9 40 237 522 4 1,6 50 839 5,6 397 2,5 63 1249,5 6,55 583 2,5

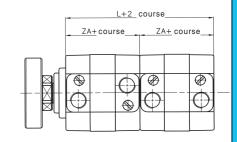
Vérin double effet tige traversante antirotation série RQ 201...

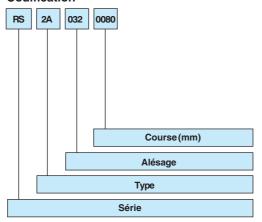
	AF	Ø AG	Ø B	вс	ВG	ØD1 H11	Ø DF	Ø DG	Ø DT	E1	E2	EE	FA	Ø FF
32	12	28	30	M5	18	14	8,2	5	9	46	47	G1/8	19,8	37
40	16	33	35	M5	18	14	10,2	5	9	56	57	G1/8	23,3	42
50	20	42	40	M6	24	18	12,2	6	11	66	67	G1/8	29,7	52
63	20	50	45	M6	24	18	12,2	6	11	79	80	G1/8	35,4	64

	Masse										
Vé		Vérin course "0" (g)	augment. pour chaque mm de course (g)	équipage mobile course "0" (g)	augment. pour chaque mm de course (g)						
32	2	270	3,55	120	1,8						
40	0	431	5,6	189,5	3,2						
50	0	663	8,1	317	5						
6:	3	969	9.05	424	5						


Vér. Ø	GG	HG	KF	L2	LB	LM	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW2	TG	VD	VD 1	WH	ZA	ZM	ZJ	ZX
32	5,2	11	M8	7	5,3	10	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	3	14	44	72	58	68
40	5,2	15	M10	7	5,3	10	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	3	14	45	73	59	69
50	6,2	19	M12	10	6,5	12	2	6	20	2,5	30	7,5	6,6	M8	17	24	46,5	5	3	18	45	81	63	75
63	6,2	25	M12	10	6,5	12	2	6	20	2,5	35	7,5	6,6	M8	17	24	56,5	5	3	18	50	86	68	80

^{*} Pour les types de vérins avec piston allongé, les cotes PJ, ZA et ZJ et ZX subiront una augmentation de 20 mm (Ø 32-40 mm), de 25 mm (Ø 50-63 mm).




Vér. Ø*	ZA	L
32	44	88
40	45	90
50	45	90
63	50	100

Codification

SÉRIE

RS vérin tandem rond RQ vérin tandem octagonal

TYPE

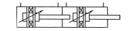
Tige inox

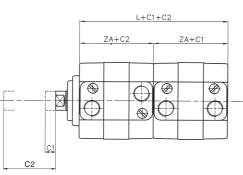
1A tige femelle3A tige mâle

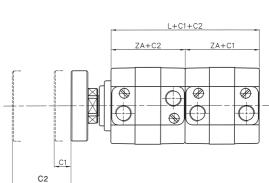
Tige chromée 2A tige femelle

4A tige mâle

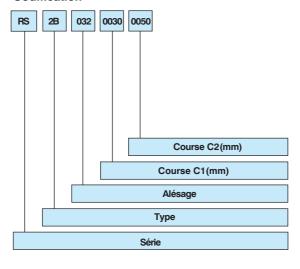
ALÉSAGE


032-040-050-063 mm


COURSE


Page 38-I

Vérin avec tiges indépendantes (à plus positions)


ø*	ZA	L
32	44	88
40	45	90
50	45	90
63	50	100

Codification

SÉRIE

RS Vérin rond avec tiges indépendantes RQ Vérin octagonal avec tiges indépendantes

TYPE

Tige inox

1B tige femelle

3B tige mâle

Tige chromée

2B tige femelle

4B tige mâle

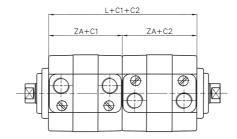
ALÉSAGE

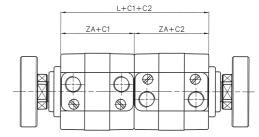
032-040-050-063 mm

COURSE 1

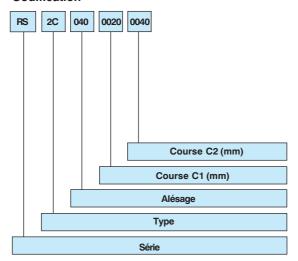
course vérin de queue(pag, 38-l).

COURSE 2


Course effective vérin de tête(pag, 38-l).


Vérin dos à dos

Vér. Ø*	ZA	L				
32	44	88				
40	45	90				
50	45	90				
63	50	100				



Codification

SÉRIE

RS vérin rond avec tiges dos à dos RQ vérin octagonal avec tiges dos à dos

TYPE

Tige inox

1C tige femelle

3C tige mâle

Tige chromée

tige femelle

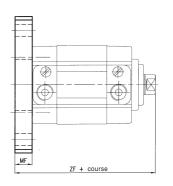
4C tige mâle

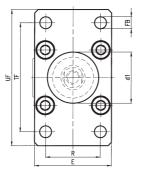
ALÉSAGE

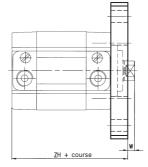
032-040-050-063 mm

COURSE 1

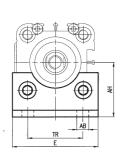
Page 38-I

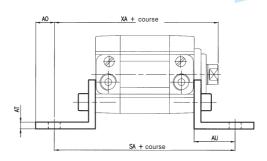

COURSE 2


Page 38-I


^{*} Pour les dimensions manquantes voir version standard pages 41 et 46.

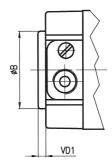
Bride avant/arrière en acier zingué, ISO MF1-MF2

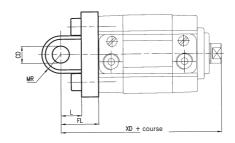


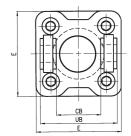


Vér. Ø	Code	Masse kg
32	KF-12032	0,20
40	KF-12040	0,25
50	KF-12050	0,50
63	KF-12063	0,65

Equerre en acier zingué, ISO MS1

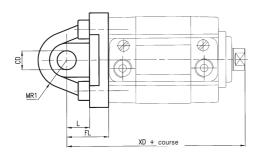


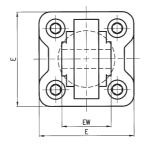

Vér. Ø	Code	Masse kg
32	KF-13032	0,07
40	KF-13040	0,09
50	KF-13050	0,20
63	KF-13063	0,20


Anneau adaptateur pour centrage arrière ISO (sur demande)

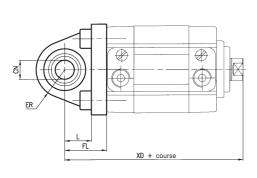
Vér. Ø	Code
32	RSF-09032
40	RSF-09040
50	RSF-09050
63	RSF-09063

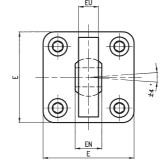
Articulation arrière femelle en aluminium moulé sous pression avec axe en acier zingué ISO MP2


Vér. Ø	Code	Masse kg
32	KF-10032A	0,06
40	KF-10040A	0,08
50	KF-10050A	0,15
63	KF-10063A	0.25

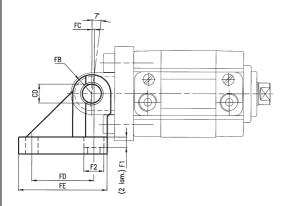

Si on enlève l'axe il est possible utiliser l'articulation femelle aussi devant.

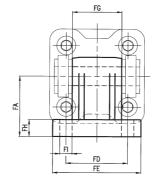
					Brid	de								E	querre						neau tateur	A	rticula	tion	feme	elle	ave	c ax	е
Ver.	Ød1 H11		ØFB H13	1	MF	1	TF Js14	UF	ZF	ZH	ØAB H13		AO	AT	AU ± 0.2	E	SA	TR	XA	ØB	VD1	СВ H14	ØCD H9	E	FL	L	MR	UB h14	XD
32	30	45	7	4	10	32	64	80	68	54	7	32	6	4	24	45	92	32	82	30	3	26	10	48	22	12	11	45	80
40	35	52	9	4	10	36	72	90	69	55	9	36	8	4	28	52	101	36	87	35	3	28	12	54	25	15	13	52	84
50	40	65	9	6	12	45	90	110	75	57	9	45	10	5	32	64	109	45	95	40	3	32	12	65	27	15	13	60	90
63	45	75	9	6	12	50	100	120	80	62	9	50	12	5	32	74	114	50	100	45	3	40	16	75	32	20	17	70	100


Articulation arrière mâle en aluminium moulé sous pression, ISO MP4 sans axe



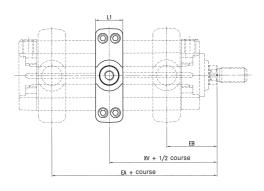
Vér. Ø	Code	Masse kg
32	KF-11032	0,20
40	KF-11040	0,25
50	KF-11050	0,50
63	KF-11063	0,65

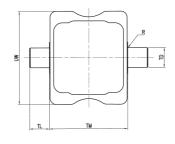

Articulation mâle rotulée en aluminium moulé sous pression



Vér. Ø	Code	Masse kg
32	KF-11032S	0,10
40	KF-11040S	0,20
50	KF-11040S	0,30
63	KF-11063S	0,35

Contre-articulation à 90° en aluminium moulé sous pression


Vis de fixation voir p	age 51
Vis de fixation ver	


Vér. Ø	Code	Masse kg
32	KF-19032	0,09
40	KF-19040	0,12
50	KF-19050	0,20
63	KF-19063	0,32

	Artic	cula	ition arı	rière	m	âle			Arti	icul	ation	mâle	e rot	ulée						Cor	itre-a	rticulatio	n			
Vér. Ø	ØCD H9	1 1 1	EW toll. -0.2/-0.6	FL	L	MR1	XD	ØCN H9	Е	EN	ER	EU	FL	L	XD	ØCD H9	FA Js15	FB	FC	FD	FE	FG -0.2/-0.6	FH	FI	F1	F2
32	10	48	26	22	12	15	80	10	48	14	15	10.5	22	14	80	10	32	10	1.2	32.5	46.5	26	9	6.4	5.5	10.5
40	12	54	28	25	15	18	84	12	54	16	18	12	25	16.5	84	12	36	12	2.6	38	51.5	28	9	6.4	5.5	10.5
50	12	65	32	27	15	20	90	12	65	16	20	12	27	17.5	90	12	45	12	0.3	46.5	63.5	32	9	8.4	5	13.5
63	16	75	40	32	20	23	100	16	75	21	23	15	32	21.5	99	16	50	16	3.3	56.5	73.5	40	10.5	8.4	5	13.5

Tourillon avec grains de fixation

Vér.	EA		l1		TD	TL	TM	UW	Х	
Ø	(max)	(min)	(max)	(max)	(e9)	(h14)	(h14)	(max)	Nom.	Toll.
32	31	41	22	0,5	12	12	50	65	36	±2
40	32	41	22	0,5	16	16	63	75	36,5	±2
50	36	45	22	1	16	16	75	95	40,5	±2
63	37	48	28	1	20	20	90	105	43	±2

Vér. Ø	Code	Masse kg
32	KDF-14032	0,13
40	RPF-14040	0,24
50	RPF-14050	0,32
63	RPF-14063	0,47

Bride pour tige femelle en aluminium moulé sous pression (avec vis de fixation, compris dans la fourniture avec les vérins octagonaux série RQ)

Vér. Ø	Code	Massa kg
32	RPF-28032	0,024
40	RSF-28040	0,035
50	RSF-28050	0,057
63	RSF-28063	0,094

Bride pour tige avec guidage antirotation en aluminium moulé sous pression pour séries RS 210...-RS211...

(fournie avec vis de fixation)

Vér. Ø	Code	Masse kg
32	RPF-29032	0,026
40	RSF-29040	0,036
50	RSF-29050	0,065
63	RSF-29063	0,100

Axe en acier zingué avec 2 circlips

Vér. Ø	FF f8	FL	FM	Masse kg	Code
32	10	53	46	0,03	KF-18032
40	12	61,3	53	0,05	KF-18040
50	12	69	61	0,05	KF-18050
63	16	80,5	71	0,12	KF-18063

Ecrou pour tige en acier zingué

	KK ZM					
Vér. Ø	ZM	KK	OR	Code		
32	M10 x 1,25	17	6	KF-16032		
40	M12 x 1,25	19	7	KF-16040		
50-63	M16 x 1,5	24	8	KF-16050		

Vis de fixation accessoires

Vis à tête cylindrique UNI 5931 Réf. AZ4-VN... indiquées pour fixations KF-12.../KF-13...

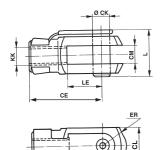
Vér. Ø	Vis	Code
32-40	M6 x 20	AZ4-VN0620
50-63	M8 x 25	AZ4-VN0825

Vis à tête cylindrique UNI 5931 Réf. AZ4-VN... indiquées pour fixations KF-19...(Ø 32-40)

	Vér. Ø	Vis deux pièces pour type	Code
	32-40	M6 x 20	AZ4-VN0620
	02°40	M6 x 25	AZ4-VN0625

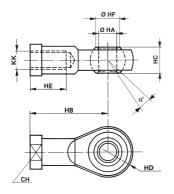
Vis à tête cylindrique UNI 5931 Réf. AZ4-VN... indiquées pour fixations KF-10.../KF-11...

Vér. Ø	Vis	Code
32-40	M6 x 25	AZ4-VN0625
50-63	M8 x 30	AZ4-VN0830

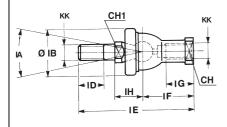

Vis à tête rabaissée DIN 7984 Réf. AZ4-VPA...

indiquées	pour	fixations	KF-	19	(Ø 50-63))
				Via da	DV I	

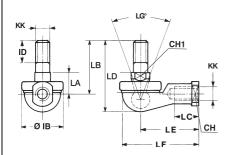
Vér. Ø	Vis deux pièces pour type	Code
50-63	M8 x 25	AZ4-VPA0825
30-03	M8 x 30	AZ4-VPA0830



Chape femelle en acier zingué pour tige à normes ISO 8140 avec axe


Vér.	CE	СК	CL	СМ	ER	KK	L	LE	Masse	Code
Ø				B12					kg	Code
32	40	10	20	10	16	M10 x 1,25	26	20	0,09	KF - 15032
40	48	12	24	12	19	M12 x 1,25	32	24	0,015	KF - 15040
50-63	64	16	32	16	25	M16 x 1,5	39	32	0,34	KF - 15050

Rotule femelle autolubrifiante en acier zingué


Vér.		а	СН	KK	HA HE		нс	HD	HE	HF	Masse	
	Ø				Н7			0 -0,12			kg	Code
	32	13°	17	M10 x 1,25	10	43	14	14	20	12,9	0,076	KF - 17032
	40	13°	19	M12 x 1,25	12	50	16	16	22	15,4	0,11	KF - 17040
	50-63	15°	22	M16 x 1,5	16	64	21	21	28	19,3	0,22	KF - 17050

Embout rotulé oscillant

Vér.		СН	CH1	IA	KK	IH	IB	ID	ΙE	IF	IG	Masse	Code
Ø		5			±0,3						kg		
	32	17	11	30°	M10 x 1,25	19,5	32	15	74,5	35	18	0,12	KF - 22025
I	40	19	17	30°	M12 x 1,25	22	36	17	84	40	20	0,185	KF - 22040
	50-63	22	19	22°	M16 x 1,5	27,5	47	23	112	50	27	0,36	KF - 22050

Embout rotulé oscillant d'équerre

Vér.	СН	CH1					LA						Masse	
Ø		Y	LG	KK	IB	ID	±0,3	LB	LC	LD	LE	LF	Masse kg	Code
32	17	11	50°	M10 x 1,25	32	15	17	37	21	50,5	43	57	0,11	KF - 23025
40	19	17	50°	M12 x 1,25	36	17	19	42	27	57,5	50	66	0,165	KF - 23040
50-63	22	19	40°	M16 x 1,5	47	23	23,5	60	33	79,5	64	84	0,33	KF - 23050

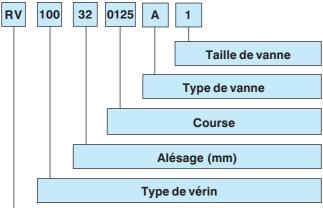
Vérins compacts de la série RV, à laquelle a été intégré une électrovanne 5/2-5/3 de la série VDMA largeur 18 ou 26 mm. L'alimentation et l'échappement ont lieu directement à partir de la plaque de connexion entre vanne et vérin avec la possibilité de régler les échappements. La connexion électrique M12 peut être commandée aussi par un PLC.

CARACTERISTIQUES TECHNIQUES

Pression de fonctionnement: 1,5 ÷ 10 bar

Température ambiante: - 20 ÷ 80°C

Fluide: air lubrifié ou non


Chemise en alliage d'aluminium extrudé avec

tige en acier chromé de série Guidages surdimensionnnés

Amortissement réglable de série (10 mm)

Vitesse max.: 1 m/s Version magnétiqe de série

Codification

Série

SÉRIE

RV = Vérin STRONG avec vanne intégrée

TYPE DE VÉRIN

Série RV

100 D.E. tige en acier inox

101 D.E. tige traversante en acier inox

200 D.E. tige chromée

201 D.E. tige traversante chromée

Les caractéristiques tecniques des vannes à partir de la page 72-III (Section vannes)

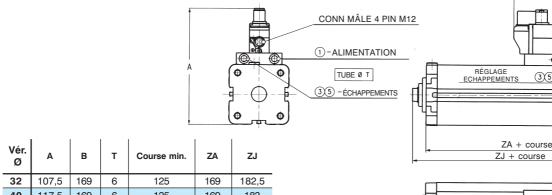
ALÉSAGE

032 - 040 - 050 - 063 mm

COURSE

Course min: 125 mm pour ø 32-40-50 mm

135 mm pour ø 63 mm


TYPE DE VANNE

- A = vanne VDMA 24 Vcc connecteur M12 5/2 monostable électrique/ressort pneumatique.
- **B** = vanne VDMA 24 Vcc connecteur M12 5/2 bistable électrique/électrique.
- C = vanne VDMA 24 Vcc connecteurM12 5/3 c.f. centres fermés électrique/électrique.
- **D** = vanne VDMA 24 Vcc connecteur M12 5/3 c.o. centres ouverts électrique/électrique.
- E = vanne VDMA 24 Vcc connecteur M12 5/3 c.p. centres en pression électrique/électrique.

(3)(5)

TAILLE DE VANNE

- 1 = VDMA largeur 18 mm pour ø 32-40-50 mm
- 2 = VDMA largeur 26 mm pour ø 63 mm

Pour les dimensions manquantes se référer à la version standard page 41-I; fixations et accessories page 49-I.

La vaste gamme de modèles et l'originalité du projet font du « vérin à faible course » UNIVER un choix obligatoire pour ceux qui ont besoin de vérins pneumatiques avec courses de travail réduites et dimensions compactes. Leur universalité, le choix des différents alésages le rend un produit qui répond positivement aux exigences de l'industrie.

CARACTERISTIQUES TECHNIQUES

Pression de fonctionnement: 1,5 ÷ 10 bar

Température ambiante: - 20 ÷ +80°C

Fluide: air filtré, avec ou sans lubrification Chemise en alliage d'aluminium extrudé avec anodisation interne et externe de 15 - 18 micron.

Têtes et fonds démontables pour inspection Piston avec anneau magnétique permanent en plastoferrite (sur demande du Ø 16 ÷ 100) Vérin avec tige antirotation Ø 16÷100 Tige traversante creuse Ø 20÷100 Version magnétique Ø 16÷100

Détails de construction

Joints du piston en composé de nitrile résistant à l'usure permettant une utilisation avec ou sans lubrification, la forme à lèvre double assure un rattrapage automatique de l'usure. Tige en acier INOX AISI 303 roulé avec filet femelle,

mamelon mâle sur demande.

Coussinet en bronze pour guidage de la tige en matériau autolubrifiant.

Butées de fin de course.

Capteur magnétique série DH-.. (section accessoires page 2) ou capteur magnétique encastré série DF-..., voir page 2-3

Tolérance nominale sur la course

Vér.	Tolérance
Ø	mm
12 ÷ 25	+ 1,5/0
32 ÷ 50	+ 2/0
63 ÷ 100	+ 2,5/0

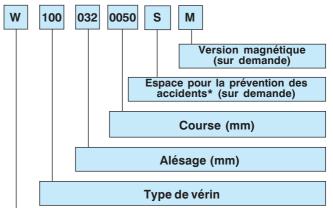
Exécutions sur demande

- Articulation arrière (pag. 64)
- Mamelon
- Vérin tandem (pag. 64)
- Unités de guidages Ø 20÷80 (section High-Tech page 47)

Tableau forces développées

On les obtient en appliquant les formules suivantes:

Effort de poussée	Effort de traction
$Fs = S \cdot p - a$	Ft = s · p - a


où: p = pression d'alimentation $<math>S = surface de poussée (cm^2)$ $<math>s = surface de traction (cm^2)$

a = frottements (10%)

Vér. Ø	Tige Ø (mm)	S (cm²)	s (cm²)	Réaction max. des ressorts (N)
12	6	1,1	0,8	6,8
16	6	2	1,7	7,8
20	10	3,1	2,3	13,2
25	10	4,9	4,1	19,6
32	12	8	6,9	35,3
40	16	12,6	10,6	45
50	16	19,6	17,6	70,5
63	20	31,1	28	96
80	25	50,3	54,3	119,5
100	25	78,5	73,6	237,2

Codification

Série

TYPE DE VÉRIN

100 D.E.	double effet
101 D.E.	double effet - tige traversante
110 D.E.	double effet - tige antirotation*
111 D.E.	double effet - tige traversante antirotation*
131 D.E.	double effet - tige traversante creuse (à partir
	du Ø 20 mm)
160 S.E.	simple effet – tige rentrée
170 S.E.	simple effet – tige sortie

VERSION AVEC ARTICULATION ARRIÈRE MÂLE

(à l'exception du Ø 12)
700 D.E. double effet
760 S.E. simple effet – tige rentrée
770 S.E. simple effet – tige sortie

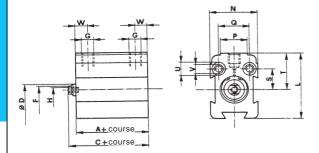
ALÉSAGE

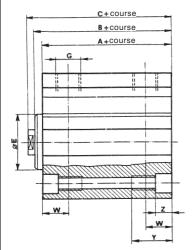
12 - 16 - 20 - 25 - 32 - 40 - 50 - 63 - 80 - 100 mm

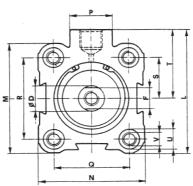
COURSES STANDARD

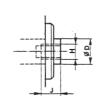
Ø12 - 25 S.E.: 5 - 10 mm

Ø32 - 100 S.E.: 5 - 10 - 25 mm Ø12 - 16 D.E.: 5 - 10 - 20 - 25 - 30 - 40 - 50 mm Ø20 - 100 D.E.: 5 - 10 - 20 - 25 - 30 - 40 - 50 - 75 mm


* Les modèles commandés par le client sans espace pour la prévention des accidents doivent être installés par l'utilisateur tout en observant la norme EN 294 (page 61-62).


Vérin double effet série W 100... / W 100...M

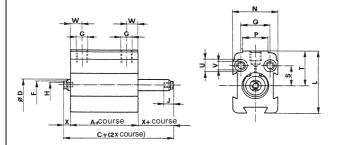

Vérin Ø 12

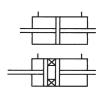


Vérin Ø 16 ÷ 100

Masse

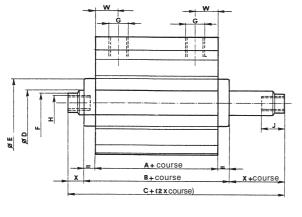
Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augmentation par mm (g)
12	0,045	-	1,2
16	0,074	0,102	1,4
20	0,095	0,12	2
25	0,135	0,155	2,85
32	0,233	0,292	4,06
40	0,394	0,43	5,47
50	0,39	0,446	6,4
63	0,64	0,772	9,7
80	1,19	1,275	14,85
100	1,72	1,92	19,7

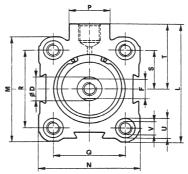

Vér. Ø	A	В	c + co	A* URS	B*	C*	D	E	F	G	н	J	L	M	N	Р	Q	R	s	т	U	trou	/	w	Y	z
12	32	-	35,5	-	-	-	6	-	5	M5	МЗ	6,5	28,5	-	20	11	13	-	9	16	6	3,7	M4	8,2	9	3,4
16	32	-	35,5	42	-	45,5	6	-	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	9	3,4
20	35	-	42	45	-	52	10	-	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	10	4,6
25	35	-	42	45	-	52	10	-	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	10	4,6
32	37	42	49	47	52	59	12	23	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	16	5,7
40	40	47	55	45	52	60	16	29,5	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	16	5,7
50	40	46,5	55	45	51,5	60	16	35,5	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	16	6,8
63	42	50,5	59	47	55,5	64	20	43	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	20	9
80	52	60	71,5	57	65	76,5	25	50	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	20	9
100	52	60	71,5	57	65	76,5	25	56	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	25	11


*Version magnétique

Vérin double effet, tige traversante série W 101.../ W 101...M

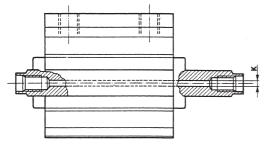
Vérin Ø 12

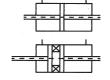




Masse

	-		
Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augmentation par mm (g)
12	0,055	-	1,4
16	0,086	0,114	1,6
20	0,112	0,137	2,65
25	0,165	0,185	3,5
32	0,295	0,354	5
40	0,5	0,536	7
50	0,478	0,534	8
63	0,79	0,922	12,2
80	1,345	1,43	18,7
100	1,875	2,075	23,6


Vérin Ø 16 ÷100

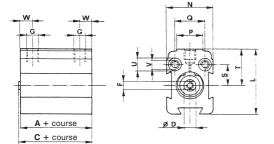


Vérin double effet, tige traversante creuse série W 131.../W 131...M

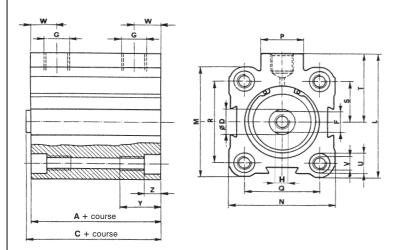
(du Ø 20 ÷ 100 mm)

Vér. Ø	12	16	20	25	32	40	50	63	80	100
K	-	-	2,5	2,5	3	4	4	6	6	6

En ce qui concerne le poids, voir tableau ci-dessus


Vér.	А	В	С	A *	В*	C*	D	E	F	G	н	J	١.	М	N	Р	Q	R	s	т	U	١	/	w	х	v	7
Ø		+	СО	URS	E			_		d	•••	٥	_	IVI	14	-	ď	11	3	•	0	trou	filet	**	^	•	
12	37	-	44	-	-	-	6	-	5	M5	МЗ	6,5	28,5	-	20	11	13	-	9	16	6	3,7	M4	8,2	3,5	9	3,4
16	37	-	44	47	-	54	6	-	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	3,5	9	3,4
20	40	-	54	50	-	64	10	-	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	7	10	4,6
25	40	-	54	50	-	64	10	-	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	7	10	4,6
32	42	52	66	52	62	76	12	23	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	7	16	5,7
40	45	59	75	50	64	80	16	29,5	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	8	16	5,7
50	45	58	75	50	63	80	16	35,5	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	8,5	16	6,8
63	47	64	81	52	69	86	20	43	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	8,5	20	9
80	52	68	91	57	73	96	25	50	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	11,5	20	9
100	52	68	91	57	73	96	25	56	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	11,5	25	11

^{*} Version magnétique

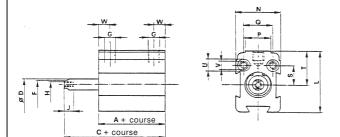

Vérin simple effet, tige rentrée série W 160.../...W 160...M

Vérin Ø 12

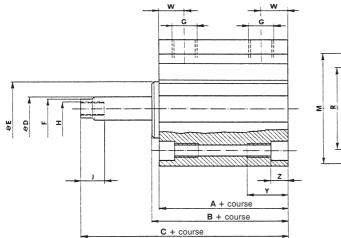
Vérin Ø 16 ÷ 100

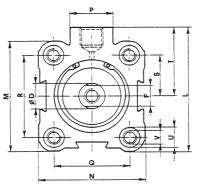
Masse

Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augmentation par mm (g)
12	0,038	-	1,2
16	0,059	0,079	1,4
20	0,07	0,095	2
25	0,096	0,116	2,85
32	0,194	0,253	4,06
40	0,326	0,362	5,47
50	0,322	0,378	6,4
63	0,533	0,715	9,7
80	1,02	1,105	14,85
100	1,49	1,69	19,7


Vér. Ø	Α	C Co	A*	'	D	F	G	н	J	L	М	N	Р	Q	R	s	т	U	trou	/	w	Υ	z
12	27	28	ui 50	_	6	5	M5	M3	6,5	28,5	-	20	11	13	_	9	16	6	3,7	M4	8,2	9	3,4
16	22	23	37	38	6	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	9	3,4
20	25	26	40	41	10	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	10	4,6
25	25	26	40	41	10	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	10	4,6
32	32	33	47	48	12	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	16	5,7
40	35	36	45	46	16	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	16	5,7
50	35	36	45	46	16	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	16	6,8
63	37	39	47	49	20	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	20	9
80	47	53	57	63	25	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	20	9
100	47	53	57	63	25	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	25	11

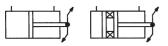
* Version magnétique

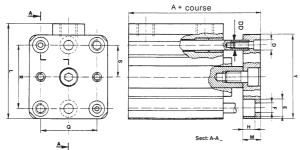

Vérin simple effet, tige sortie série W 170.../ W 170...M


Vérin Ø 12

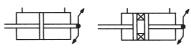
Vérin Ø 16 ÷ 100

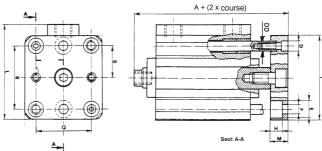
Mass

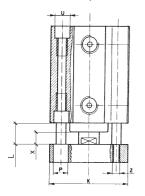

Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augmentation par mm (g)
12	0,045	-	1,2
16	0,7	0,098	1,4
20	0,86	0,111	2
25	0,122	0,142	2,85
32	0,212	0,271	4,06
40	0,366	0,402	5,47
50	0,352	0,408	6,4
63	0,59	0,772	9,7
80	1,104	1,189	14,85
100	1,576	1,776	19,7

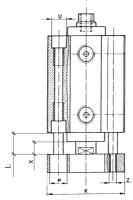

Vér. Ø	A	В	c + cou	A* JRSE	В*	C*	D	E	F	G	н	J	L	М	N	Р	Q	R	s	Т	U	trou	/ filet	w	Υ	z
12	32	-	35,5	-	-	-	6	-	5	M5	МЗ	6,5	28,5	-	20	11	13	-	9	16	6	3,7	M4	8,2	9	3,4
16	27	-	30,5	42	-	4,5	6	-	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	9	3,4
20	30	-	37	45	-	52	10	-	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	10	4,6
25	30	-	37	45	-	52	10	-	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	10	4,6
32	32	37	44	47	52	59	12	23	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	16	5,7
40	35	42	50	45	52	60	16	29,5	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	16	5,7
50	35	41,5	50	45	51,5	60	16	35,5	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	16	6,8
63	37	45,5	54	47	55,5	64	20	43	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	20	9
80	47	55	66,5	57	65	76,5	25	50	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	20	9
100	47	55	66,5	57	65	76,5	25	56	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	25	11

^{*} Version magnétique

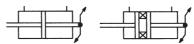




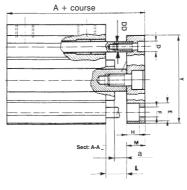


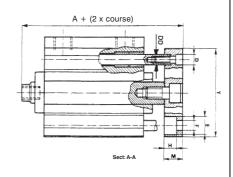


Tige traversante avec guidage antirotation Série W 111 .../ W 111...M



Tige avec guidage antirotation Série W 110...S / W 110...SM

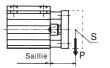



(avec espace pour la prévention des accidents)

Tige traversante avec guidage antirotation Série W 111...S / W 111...SM

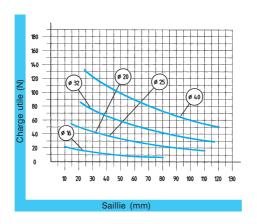
(avec espace pour la prévention des accidents)

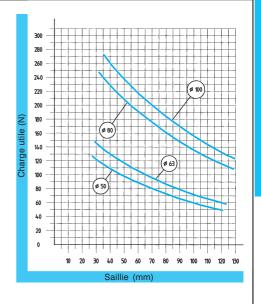
Masse


Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augmentation par mm (g)			
16	0,104	0,132	1,8			
20	0,15	0,175	3,1			
25	0,214	0,234	3,95			
32	0,392	0,452	5,8			
40	0,651	0,686	8,2			
50	0,688	0,744	9,2			
63	1,11	1,242	14			
80	1,905	1,99	21			
100	2,785	2,985	26,7			

Masse

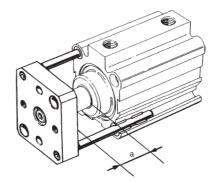
Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augmentation par mm (g)			
16	0,104	0,132	1,8			
20	0,15	0,175	3,1			
25	0,214	0,234	3,95			
32	0,392	5,8				
40	0,651	0,686	8,2			
50	0,688	0,744	9,2			
63	1,11	1,242	14			
80	1,905	1,99	21			
100	2,785	2,985	26,7			




Diagramme charge utile en fonction de la saillie

S = centre de gravité de la charge

P = charge utile en Newton



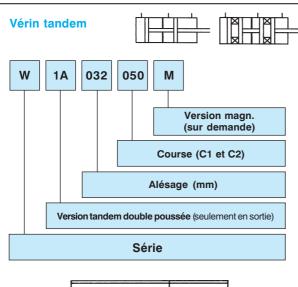
Cotes d'encombrement vérins avec tige antirotation

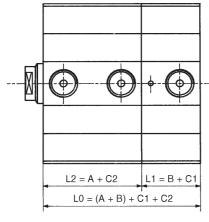
Vé Ø	: x	L	W110 A + course	W111 A + (2 x course)	W110M A* + course	W111M A* + (2 x course)	D	D D	E	F	н	к	M	Р	Q	R	s	Υ	z
16	3,5	3,5	42,5	51	52,5	61	6	4	6	3,5	3,5	27,5	7	6	20	20	10	27,5	МЗ
20	7	7	50	62	60	72	7,5	6	7,5	4,5	4,5	31,5	8	7,5	22	22	11	31,5	M4
25	7	7	50	62	60	72	7,5	6	7,5	4,5	5	36	8	7,5	26	28	14	38	M4
32	7	12	59	76	69	86	9	8	10	5,5	6	44,5	10	10	32	36	18	47,5	M4
40	8	15	65	85	70	90	10,5	10	10	5,5	6	53,5	10	10	40	40	20	53,5	M5
50	8,5	15	67	87	72	92	10,5	10	11	6,5	7	63,5	12	11	50	50	25	63,5	M6
63	8,5	17	71	93	76	98	13,5	12	14	9	9	79,5	12	15	62	62	31	79,5	M6
80	11,	5 19,5	85,5	105	90,5	110	13,5	14	14	9	9	99,5	14	15	82	82	41	99,5	M8
10	11,	5 19,5	87,5	107	92,5	112	16,5	16	16,5	10,5	10,5	123,5	16	17	103	103	51,5	123,5	M8

^{*}version magnétique

Options cotes d'encombrement se référant aux vérins avec tige antirotation et espace d'arrêt pour la prévention des accidents.

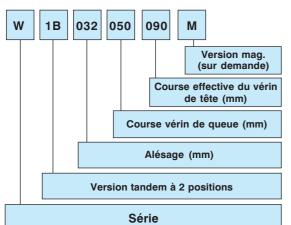
Vér. Ø	W110 A + course	W111 A + (2 x course)	W110M A* + course	W111M A* + (2 x course)	L	a
16	67,5	76	77,5	86	28,5	28,5
20	70	82	80	92	27	27
25	70	82	80	92	27	27
32	79	96	89	106	32	27
40	85	105	90	110	35	28
50	87	107	92	112	35	28,5
63	91	113	96	118	37	28,5
80	100,5	120	105,5	125	34,5	26,5
100	102.5	122	107.5	127	3/15	26.5

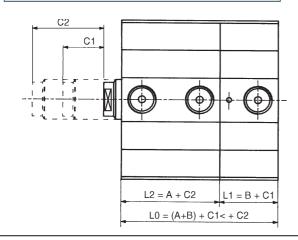

Espace d'arrêt pour la prévention des accidents, à savoir distance de sécurité qui doit être observée par l'utilisateur selon la norme EN 294.



Attention: pour toutes les dimensions manquantes voir les versions sans tige antirotation

^{*}version magnétique


Tandem faible course « série W »


	Vér. Ø L2 = A + C2		L1 = B + C1	L0 = (A+B) + C1 + C2		
	16	L2 = 37 + C2	L1 = 22 + C1	L0 = 59 + C1 + C2		
	20	L2 = 40 + C2	L1 = 25 + C1	L0 = 65 + C1 + C2		
ı	25	L2 = 40 + C2	L1 = 25 + C1	L0 = 65 + C1 + C2		
	32	L2 = 42 + C2	L1 = 23 + C1	L0 = 65 + C1 + C2		
	40	L2 = 45 + C2	L1 = 26,5 + C1	L0 = 71,5 + C1 + C2		
	50	L2 = 45 + C2	L1 = 26 + C1	L0 = 71 + C1 + C2		
	63	L2 = 47 + C2	L1 = 29 + C1	L0 = 76 + C1 + C2		
	80	L2 = 52 + C2	L1 = 38 + C1	L0 = 90 + C1 + C2		
ı	100	L2 = 52 + C2	L1 = 38 + C1	L0 = 90 + C1 + C2		

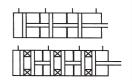
Tandem faible course « série W » magnétique

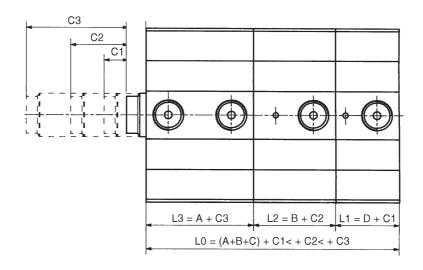
Vér. Ø	L2 = A + C2	L1 = B + C1	L0 = (A+B) + C1 + C2		
16	L2 = 47 + C2	L1 = 37 + C1	L0 = 84 + C1 + C2		
20	L2 = 50 + C2	L1 = 40 + C1	L0 = 90 + C1 + C2		
25	L2 = 50 + C2	L1 = 40 + C1	L0 = 90 + C1 + C2		
32	L2 = 52 + C2	L1 = 38 + C1	L0 = 90 + C1 + C2		
40	L2 = 50 + C2	L1 = 36,5 + C1	L0 = 86,5 + C1 + C2		
50	L2 = 50 + C2	L1 = 36 + C1	L0 = 86 + C1 + C2		
63	L2 = 52 + C2	L1 = 39 + C1	L0 = 91 + C1 + C2		
80	L2 = 57 + C2	L1 = 48 + C1	L0 = 105 + C1 + C2		
100	L2 = 57 + C2	L1 = 48 + C1	L0 = 105 + C1 + C2		

Vérin tandem à deux positions

La course C1 est toujours inférieure à la course C2.

Tandem faible course à deux positions "Série W"


Vér. Ø	L2 = A + C2	L1 = B + C1	L0 = (A+B) + C1< + C2
16	L2 = 37 + C2	L1 = 22 + C1	L0 = 59 + C1< + C2
20	L2 = 40 + C2	L1 = 25 + C1	L0 = 65 + C1< + C2
25	L2 = 40 + C2	L1 = 25 + C1	L0 = 65 + C1< + C2
32	L2 = 42 + C2	L1 = 23 + C1	L0 = 65 + C1< + C2
40	L2 = 45 + C2	L1 = 26,5 + C1	L0 = 71,5 + C1< + C2
50	L2 = 45 + C2	L1 = 26 + C1	L0 = 71 + C1< + C2
63	L2 = 47 + C2	L1 = 29 + C1	L0 = 76 + C1< + C2
80	L2 = 52 + C2	L1 = 38 + C1	L0 = 90 + C1< + C2
100	L2 = 52 + C2	L1 = 38 + C1	L0 = 90 + C1< + C2


Tandem faible course à deux positions « série W » magnétique

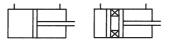
Vér. Ø	L2 = A + C2	L1 = B + C1	L0 = (A+B) + C1< + C2
16	L2 = 47 + C2	L1 = 37 + C1	L0 = 84 + C1< + C2
20	L2 = 50 + C2	L1 = 40 + C1	L0 = 90 + C1< + C2
25	L2 = 50 + C2	L1 = 40 + C1	L0 = 90 + C1< + C2
32	L2 = 52 + C2	L1 = 38 + C1	L0 = 90 + C1< + C2
40	L2 = 50 + C2	L1 = 36,5 + C1	L0 = 86,5 + C1< + C2
50	L2 = 50 + C2	L1 = 36 + C1	L0 = 87 + C1< + C2
63	L2 = 52 + C2	L1 = 39 + C1	L0 = 91 + C1< + C2
80	L2 = 57 + C2	L1 = 48 + C1	L0 = 105 + C1< + C2
100	L2 = 57 + C2	L1 = 48 + C1	L0 = 105 + C1< + C2

Vérin à plus positions WS (référence selon dessin)

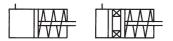
Tandem faible course à plus positions « série W »

Vér. Ø	L3 = A + C3	L2 = B + C2	L1 = D + C1	L0 = (A+B+D) + C1< + C2< + C3
16	L3 = 37 + C3	L2 = 27 + C2	L1 = 22 + C1	L0 = 86 + C1< + C2< + C3
20	L3 = 40 + C3	L2 = 30 + C2	L1 = 25 + C1	L0 = 95 + C1< + C2< + C3
25	L3 = 40 + C3	L2 = 30 + C2	L1 = 25 + C1	L0 = 95 + C1< + C2< + C3
32	L3 = 42 + C3	L2 = 28 + C2	L1 = 23 + C1	L0 = 93 + C1< + C2< + C3
40	L3 = 45 + C3	L2 = 31,5 + C2	L1 = 26,5 + C1	L0 = 103 + C1< + C2< + C3
50	L3 = 45 + C3	L2 = 31 + C2	L1 = 26 + C1	L0 = 102 + C1< + C2< + C3
63	L3 = 47 + C3	L2 = 36 + C2	L1 = 29 + C1	L0 = 112 + C1< + C2< + C3
80	L3 = 52 + C3	L2 = 38 + C2	L1 = 38 + C1	L0 = 128 + C1< + C2< + C3
100	L3 = 52 + C3	L2 = 38 + C2	L1 = 38 + C1	L0 = 128 + C1< + C2< + C3

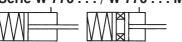
Tandem faible course à plus positions « série W » magnétique

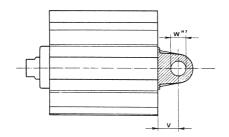

Vér. Ø	L3 = A + C3	L2 = B + C2	L1 = D + C1	L0 = (A+B+D) + C1< + C2< + C3
16	L3 = 47 + C3	L2 = 42 + C2	L1 = 37 + C1	L0 = 126 + C1< + C2< + C3
20	L3 = 50 + C3	L2 = 45 + C2	L1 = 40 + C1	L0 = 135 + C1< + C2< + C3
25	L3 = 50 + C3	L2 = 45 + C2	L1 = 40 + C1	L0 = 135 + C1< + C2< + C3
32	L3 = 52 + C3	L2 = 43 + C2	L1 = 38 + C1	L0 = 133 + C1< + C2< + C3
40	L3 = 50 + C3	L2 = 41,5 + C2	L1 = 36,5 + C1	L0 = 128 + C1< + C2< + C3
50	L3 = 50 + C3	L2 = 41 +C2	L1 = 36 + C1	L0 = 127 + C1< + C2< + C3
63	L3 = 52 + C3	L2 = 44 + C2	L1 = 39 + C1	L0 = 135 + C1< + C2< + C3
80	L3 = 57 + C3	L2 = 48 + C2	L1 = 48 + C1	L0 = 153 + C1< + C2< + C3
100	L3 = 57 + C3	L2 = 48 + C2	L1 = 48 + C1	L0 = 153 + C1< + C2< + C3

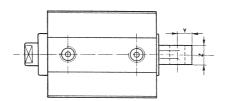
Attention : possibilité de fournir version avec tige antirotation Pour les dimensions manquantes voir série W 100... page 57.

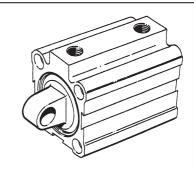


Articulation arrière mâle

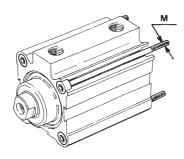

Série W 700 . . . / W 700 . . . M



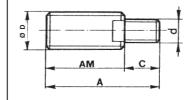

Série W 760 . . . / W 760 . . . M

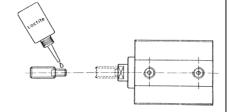


Série W 770 . . . / W 770 . . . M



Masse										
	W7	00/W700	М	W7	60/W760	М	W7	W770/W770M		
Vér. Ø	Course 0 non magnétique kg	Course 0 magnétique kg	Augment. par mm (g)	Course 0 non magnétique kg	Course 0 magnétique kg	Augment. par mm (g)	Course 0 non magnétique kg	Course 0 magnétique kg	Augment. par mm (g)	
12	-	-	1	-	ı	1	-	-	-	
16	0,082	0,11	1,4	0,067	0,087	1,4	0,078	0,106	1,4	
20	0,1075	0,1325	2	0,0825	0,0975	2	0,0985	0,1235	2	
25	0,1585	0,1785	2,85	0,119	0,139	2,85	0,145	0,165	2,85	
32	0,2765	0,3355	4,06	0,2375	0,2965	4,06	0,2555	0,3155	4,06	
40	0,4705	0,5065	5,47	0,4025	0,4385	5,47	0,442	0,4785	5,47	
50	0,417	0,473	6,4	0,349	0,405	6,4	0,379	0,435	6,4	
63	0,6815	0,8135	9,7	0,5745	0,7565	9,7	0,6315	0,9135	9,7	
80	1,2385	1,3235	14,85	1,0685	1,1535	14,85	1,1525	1,2375	14,85	
100	1,775	1,975	19,7	1,545	1,745	19,7	1,631	1,831	19,7	


Vér. Ø	Υ	z	øw	v
12	-	-	-	-
16	5,5	9	6	6,2
20	5,5	9	6	6,5
25	6	12	6	8
32	9	14	10	11
40	10	16	12	13
50	12	17	12	16,5
63	14	21	16	18
80	14	21	16	16,5
100	17	25	20	21


Vis de fixation

Vér. Ø	12	16*	2
М	3	3	-

Mamelon

Vér. Ø	Α	AM	С	D	d	Code
12-16	22,5	16	6,5	6 x 1	М 3	WF-50012
20-25	30	20	10	8 x 1,25	M 5	WF-50020
32	34	22	12	10 x 1,25	M 6	WF-50032
40	38	24	14	12 x 1,25	M 8	WF-50040
50	46	32	14	16 x 1,5	M 8	WF-50050
63	47	32	15	16 x 1,5	M 10	WF-50063
80-100	60	40	20	20 x 1,5	M 12	WF-50080

^{*} seulement pour le diamètre 16 en version magnétique, les vis de fixation doivent être amagnétiques.

Vérin ovale de dimensions compactes avec amortissement pneumatique réglable et magnétique de série; sa forme, en outre, permet le montage de plusieurs vérins accouplés avec des encombrements réduits (en largeur).

CARACTÉRISTIQUES TECHNIQUES

Pression de fonctionnement : 1,5 \div 10 bar Température ambiante : -20°C \div 80°C Fluide : air filtré, avec ou sans lubrification Chemise en alliage d'aluminium extrudé avec anodisation interne et externe de 15 μ m avec profils pour capteurs à disparition.

Têtes et fonds en aluminium

Vis autotaradeuses en acier zingué

Piston en aluminium

Joints du piston en caoutchouc de nitrile

Joints de la tige en polyuréthane

Décélérateurs pneumatiques réglables qui permettent une décélération efficace du piston et réduisent la

pollution sonore.

Tige en acier chromé Ø 32 ÷ 80 mm, en acier inox

Ø 18 ÷ 25 mm

Version magnétique de série

Vitesse max.: 1 m/s

Fixation intégrée avant, arrière, dessous et latérale.

Versions sur demande:

- Versions avec tige en acier inox (Ø 32 ÷ 80 mm) ou en acier chromé (Ø 18 ÷ 25 mm)
- Capteur magnétique série DF-...
- Bande de protection du fil du capteur magnétique code DHF-002100

Forces théoriques [N] développées à la pression d'utilisation [bar]

Vér.	Pression d'utilisation[bar]						
Ø		2	4	6	8	10	
18	Poussée	54	108	162	216	270	
	Traction	41	82	122	163	204	
25	Poussée	98	196	295	393	491	
	Traction	82	165	247	330	412	
32	Poussée	161	322	483	643	804	
	Traction	138	276	415	553	691	
40	Poussée	251	502	754	1005	1256	
	Traction	221	422	633	844	1055	
50	Poussée	393	785	1178	1570	1963	
	Traction	330	660	990	1320	1650	
63	Poussée	623	1246	1870	2493	3116	
	Traction	560	1120	1682	2240	2800	
80	Poussée	1005	2010	3015	4019	5024	
	Traction	942	1884	2826	3770	4711	

Moment de torsion max. applicable [Nm] et relative rotation max.

et relative rotation max.				
Vér				
Ø	Nm	Degrés		
18	0,80	0,90		
25	1,00	0,80		
32	1,40	0,60		
40	1,70	0,40		
50	2,00	0,35		
63	2,30	0,30		
80	2,60	0,30		

Dans le cas des vérins pneumatiques avec tige traversante la force théorique à prendre en considération dans tous les deux sens est toujours identique à la valeur en "traction" indiquée dans le tableau.

En fait, ces valeurs doivent être réduites étant donné qu'il faut tenir compte du poids et des frottements de glissement des parties mobiles (~ -10%).

Tolérance nominale sur la course

Vér	Tolérance
Ø	m m
18 ÷ 25	+ 1,5/0
32 ÷ 50	+ 2/0
63 ÷ 80	+ 2,5/0

Codification

OV 200 050 0080

Course

Alésage

Type

Série

TYPE

1--- Tige femelle en acier inox

2--- Tige femelle en acier chromé (Ø 18 – 25 mm exclus)

3--- Tige mâle en acier inox

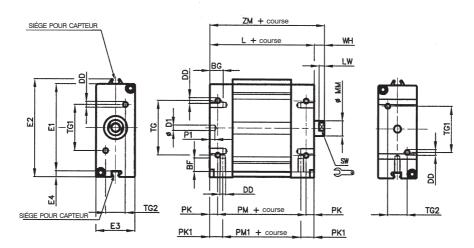
4--- Tige mâle en acier chromé (Ø 18 – 25 mm exclus) -00 D.E

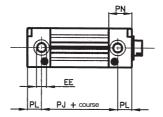
-01 D.E tige traversante

-02 D.E tige traversante creuse

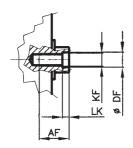
ALÉSAGE

018 - 025 - 032 - 040 - 050 - 063 - 080 mm

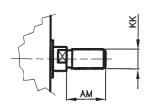

COURSE


0010-0025-0040-0050-0080-0100-0125-0160-0200 (Ø 18 ÷ 80 mm)

0250-0320 (Ø 32 ÷ 80 mm)

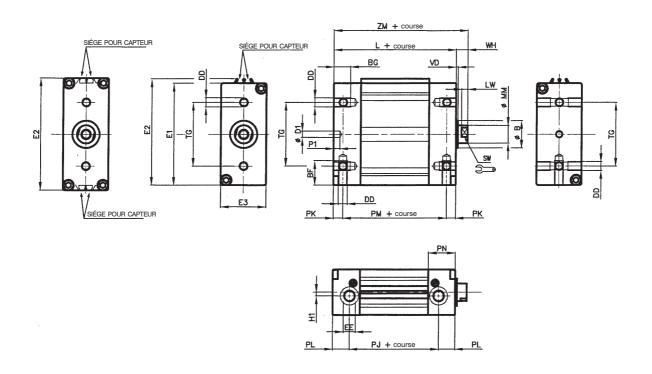


Vérin double effet Ø 18 mm



Série OV100.../OV200... Tige femelle

Série OV300.../OV400... Tige mâle

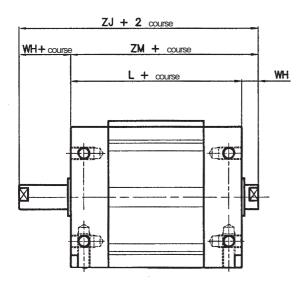

Vér. Ø	AF min	АМ	B f9	BF min	BG min	D1 H9	DD	DF	E1	E2	E3	EE	H1	L	KF	KK	LK
18	8	20		6	6	4	M4	4,1	40,5	50,5	16	M5		60	M4	M8	1
25	12	22	16	8	8	4	M4	5,1	52	57	20	M5		62	M5	M10X1,25	2
32	14	22	20	8	8	4	M5	6,2	61	66	24,5	G1/8	4,5	72	M6	M10X1,25	2,5
40	16	24	25	12	12	4	M5	8,2	61,5	67	38	G1/8	9	76	M8	M12X1,25	3
50	20	32	30	14	14	5	M8	10,5	76	81	40	G1/4	9,5	82	M10	M16X1,5	5
63	20	32	30	14	10,5	5	M10	10,5	92	97	50	G1/4	10,5	82	M10	M16X1,5	5
80	20	32	40	15	15	5	M10	10,5		130	60	G1/4	9	106	M10	M16X1,5	5

Vérin double effet Ø 25 ÷ 80 mm

Vér. Ø 80 mm

Vér. Ø 25 ÷ 63 mm

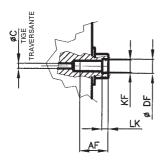
Masse


Vér. Ø	Vérin course "0" (g)	Augmentation chaque mm de course (g)	Parties mobiles course "0" (g)	Augmentation chaque mm de course (g)	
18	120	1,3	30	0,4	
25	180	1,8	60	0,6	
32	290	2,4	105	0,9	
40	465	3,4	165	1,6	
50	780	4,7	230	2,5	
63	1145	5,8	295	2,5	
80	2245	8,6	535	2,5	

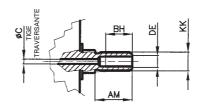
NOTE : La longueur d'amortissement peut varier par rapport à celle indiquée en fonction des différentes applications d'emploi et de fonctionnement.

Vér. Ø	ММ	P1	PJ	PK	PL	РМ	PN	sw	TG	VD	WH	ZM	Longueur d'amortissement
18	8	7	44	4	8	52	16	7	20		7	67	8
25	10	7	38	4	12	54	16	8	32	2	8	70	10
32	12	7	57	5	7,5	62	18	10	36	2	8	80	10
40	16	7	47	7,5	14,5	61	22	13	40	2	9	85	14
50	20	7	41	8,5	20,5	65	30	17	50	2	10	92	avant 11/arrière 14
63	20	7	41	8,5	20,5	65	30	17	60	2	10	92	avant 11/arrière 14
80	20	7	66	9	20	88	30	17	75	3	12	118	avant 20/arrière 27

Vérin double effet tige traversante Ø 18 \div 80 mm

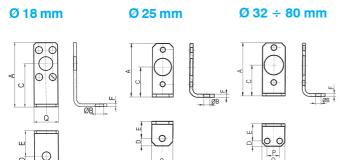


Masse

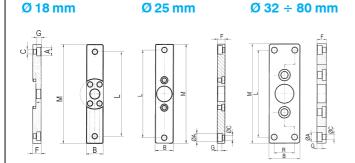

Vér. Ø	Vérin course "0" (g)	Augmentation chaque mm de course (g)	Parties mobiles course "0" (g)	Augmentation chaque mm de course (g)
18	140	1,7	50	0,8
25	210	2,4	90	1,2
32	330	3,2	140	1,8
40	535	5	235	3,2
50	900	7,2	350	5
63	1265	8,3	415	5
80	2390	11	680	5

NOTE: pour les dimensions manquantes se référer aux pages 4/5.

Série OV-102.../OV202... Tige femelle traversante creuse Ø 18 ÷ 25 mm course max 100 mm Ø 32 ÷ 80 mm course max 160 mm


Série OV-302.../OV402... Tige mâle traversante creuse Ø 18 ÷ 25 mm course max 100 mm Ø 32 ÷ 80 mm course max 160 mm

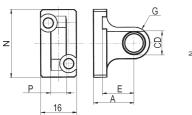
	ér. Ø	AF min	АМ	C min	DE	DF	KF	KK	L	LK	WH	ZM	ZJ	Longueur d'amortissement
1	8	8	20	1,5		4,1	M4	M8	60	1	7	67	74	8
2	5	12	22	2,5		5,1	M5	M10X1,25	62	2	8	70	78	10
3	2	14	22	3,5		6,2	M6	M10X1,25	72	2,5	8	80	88	10
4	0	16	24	5		8,2	M8	M12X1,25	76	3	9	85	94	14
5	0	20	32	7,5	G1/8	10,5	M10	M16X1,5	82	5	10	92	102	11
6	3	20	32	7,5	G1/8	10,5	M10	M16X1,5	82	5	10	92	102	11
8	0	20	32	7,5	G1/8	10,5	M10	M16X1,5	106	5	12	118	130	20

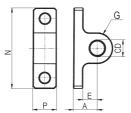


Pied en acier zingué

Vér. Ø	Α	ØВ	С	D	E	F	Р	Q	Code
18	43	5,5	29	5	17	2	-	16	OVF-13018
25	50	5,5	28	7	16	3	-	20	OVF-13025
32	55	5,5	32	5,5	18	3	13	24	OVF-13032
40	65	5,5	40	7	20	4	16	30	OVF-13040
50	85	6,6	50	8	24	4	22	38	OVF-13050
63	105	9	63	10	27	4	30	50	OVF-13063
80	130	9	80	10	29	6	40	60	OVF-13080

Bride en alliage d'aluminium




Vér. Ø	ØA	В	øс	F	G	L	М	R	Code
18	8	16	4,5	8	4,3	80	94	-	OVF-12018
25	10	20	5,5	10	5,7	100	115	-	OVF-12025
32	11	24	6,6	10	6,3	115	130	-	OVF-12032
40	11	30	6,6	10	6,3	132	146	-	OVF-12040
50	15	38	9	12	8,3	140	160	21	OVF-12050
63	15	50	9	15	8,3	140	160	33	OVF-12063
80	15	60	9	20	8,3	178	200	40	OVF-12080

Articulation mâle en alliage d'aluminium

Ø 18 mm

Vér. Ø	Α	CD ØH7	Е	G	N	P H12	Code
18	18	8	14	7	30	7	OVF-11018
25	14	8	8	7,5	42	9	OVF-11025
32	15	10	9	10	47	10,5	OVF-11032
40	18	12	12	13	52	10,5	OVF-11040
50	20	12	12	13	68	20	OVF-11050
63	24	16	16	17	80	25	OVF-11063
80	24	16	9	17	95	25	OVF-11080

Ecour pour tige mâle

Vér. Ø	ZM	KK	OR	Code
18	M8	13	5	MF-16020
25	M10X1,25	17	6	KF-16032
32	M10X1,25	17	6	KF-16032
40	M12X1,25	19	7	KF-16040
50	M16X1,5	24	8	KF-16050
63	M16X1,5	24	8	KF-16050
80	M16X1,5	24	8	KF-16050

Vis de fixation

Vis cylindrique UNI5931 (100 pièces) pour OVF-13.. Pied

Ø 18 AZ4-VN0408 Ø 40 AZ4-VN0514 Ø 80 AZ4-VN1020

Ø 25 AZ4-VN0410 Ø 50 AZ4-VN0816 Ø 32 AZ4-VN0510 Ø 63 AZ4-VN1018

Vis cylindrique DIN7984 (100 pièces) pour OVF-12.. Bride

 \emptyset 18 AZ4-VPA0408 \emptyset 40 AZ4-VPA0518 \emptyset 80 AZ4-VPA1025

Ø 25 AZ4-VPA0414 Ø 50 AZ4-VPA0818

Ø 32 AZ4-VPA0512 Ø 63 AZ4-VPA1018

Vis cylindrique UNI5931 (100 pièces) pour OVF-11.. Articulation mâle

Ø 18 AZ4-VN0410 Ø 40 AZ4-VN0516 Ø 80 AZ4-VN1025

Ø 25 AZ4-VN0412 Ø 50 AZ4-VN0820

Ø 32 AZ4-VN0512 Ø 63 AZ4-VN1016