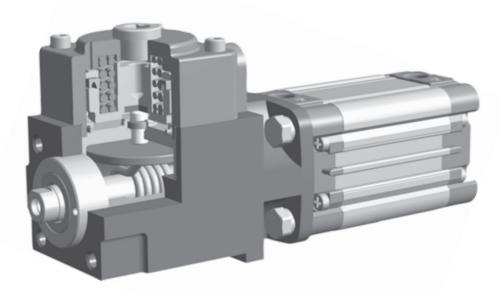
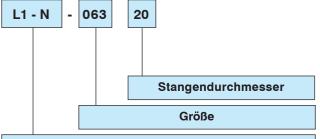


Produktfamilie	Serie	Seite	Druckluftzylinder
Produktiamilie	Serie	Seile	
Feststelleinheiten für Zylinder 6 ÷ 32 mm (passend für Zylinder Ø 16 ÷ 125 mm)	L1-N	3-8	
Kolbenstangenlose Zylinder Ø 25 ÷ 50 mm	S-VL	9-24	
Pneumatische Teleskopzylinder	7	///	High-Tech
zwei- und dreistufig Ø 25 ÷ 63 mm	RT	25 - 31	
Pneumatische Teleskopzylinder zwei- und dreistufig Ø 32 ÷ 63 mm mit integriertem VDMA Ventil Serie BD	RW	32	
Führungseinheiten für: - Mikrozylinder und Zylinder ISO Ø 16 ÷ 100 mm Serie M – K – KD	J	35-45	Ventile
- kolbenstangenlose Zylinder Ø 25 ÷ 50 mm Seri	ie S1	46	ventue
- Kurzhubzylinder Ø 20 ÷ 80 mm Serie W		47 - 49	
- Kompaktzylinder STRONG Ø 32 ÷ 63 mm Serie	RS	50 - 54	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
- Teleskopzylinder 2-stufig Ø 32 ÷ 63 mm Serie I	RT2	55-57	
- Zubehör		58	
Pneumatischer Aktuator mit integriertem Sicherheits-Feststellsystem	NFZ	59	Wartungseinheiten FRL
Pneumatischer Aktuator mit integriertem Abtaster	NQZ	60 - 61	
Pneumatischer Aktuator mit Digitalabtaster		1	Zubehör Technische Informationen Wörterverzeichnis Ausführliches
und integriertem Feststellsystem	NTZ	62 - 63	Inhaltsverzeichnis


Ein Produkt, das den gewohnten und traditionellen Charakter der UNIVER Feststelleinheit mit einem neuen und revolutionären "elastischen Herz" vereint und das die schon ausgezeichneten Leistungen unter allen Gesichtspunkten verbessert: maximale Feststellkraft, ausgezeichnete Ansprechzeit, sehr hohe beseitigbare kinetische Energie, hohe Feststellwiederholbarkeit, ausgezeichnete Stoß- und Schwingungsbeständigkeit

TECHNISCHE DATEN



Typenschlüssel

Serie

SERIE

 1 Mechanische Feststelleinheit für reduzierten Kolbenstangenüberstand Ø 16-20-25 Mechanische Feststelleinheit für reduzierten Kolbenstangenüberstand und ISO Ø 32 ÷ 125

ZYLINDERDURCHMESSER

Ø 16 ÷ 125

STANGENDURCHMESSER

Ø 6 ÷ 32

Medium: gefilterte, geölte oder ungeölte Druckluft

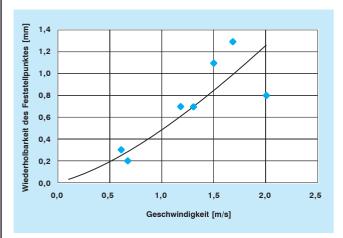
Betriebsdruck: 4 ÷ 10 bar

Umgebungstemperatur: -20° ÷ 80°C

BESONDERHEITEN

- * ausgelegt nur für Stangen aus verchromtem Stahl
- * voll austauschbar mit der vorhergehenden Serie
- kein Problem mit Laständerungen oder plötzlich auftretenden Lasten
- die neue Serie funktioniert auch problemlos mit Kolbenstangen oder Führungsstangen, die mit Öl verschmutzt sind
- die Sicherheitsvorschriften werden in jeder Beziehung befolgt; der Luftdruck kann nur zum Lösen der Vorrichtung verwendet werden.

Zylinderdurchmesser (mm)	16	20	25	32	40	50	63	80	100	125
Kolbenstangendurchmesser (mm)	6	8	10	12	16	20	20	25	25	32
Pneumatischer Anschluß	G 1/8									
Masse kg	0,43	0,43	0,43	0,78	1	1,50	2,30	4	6,70	10,70



Eine Feder aus speziellem Stahl, mit FEA (Finite Element Analysis) entwickelt, in Verbindung mit den fortschrittlichsten CAD Techniken stellen das Herz dieser neuen Feststellvorrichtung dar, die außer dem bewährten Feststellvermögen und der ausgezeichneten Wiederholbarkeit ein sanftes Abbremsen der bewegten Masse erlauben.

Wesentliche Leistungen und Eigenschaften:

Größe oder Durchmesser des gleichwertigen Zylinders	16 (Kolbenstange 6)	20 (Kolbenstange 8)	25 (Kolbenstange 10)	32 (Kolbenstange 12)	40 (Kolbenstange 16)	50 (Kolbenstange 20)	63 (Kolbenstange 20)	80 (Kolbenstange 25)	100 (Kolbenstange 25)	125 (Kolbenstange 32)		
Statische Feststellkraft [N]	200	314	490	800	1260	2000	3100	5000	7850	12300		
Druck auf den gleichwertigen Zylinder [bar]	10	10	10	10	10	10	10	10	10	10		
Dynamische Bremskraft bei 1 m/s		40 % der statischen Feststellkraft										
Ansprechzeit bei 6 bar [ms]	12	12	15	20	20	25	25	30	30	40		
Wiederhol barkeit des Feststellpunktes			< 1 mi	m bei 1 m/s (siehe nachs	tehende Ku	rve)					
Schwingungsbeständigkeit			10 gr	(10-55 Hz) 3	0 Minuten a	uf jeder Ach	se					
Stoßfestigkeit [J]	2	3	4	5	8	11	15	21	29	40		
Min. Lösungsdruck [bar]*		4										

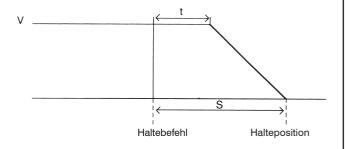
^{*} Bei Lösungsdruckwerten unter 4 bar ist das Verhalten der Feststelleinheit nicht voraussehbar.

Bremsweg

Für einige Anwendungen ist es erforderlich, den Weg zu kennen, den die Kolbenstange in der Zeit zwischen dem Haltebefehl und dem Erreichen der Halteposition zurücklegt. Der Weg (S) hängt von den folgenden Faktoren ab:

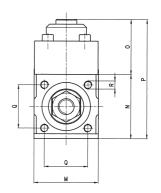
V = Geschwindigkeit im Augenblick des Haltebefehls in m/s

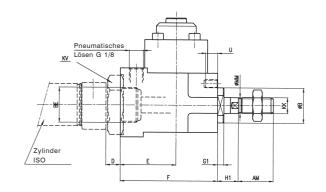
t = Ansprechzeit des Feststellsystems in Sekunden (ca. 0,03 s)

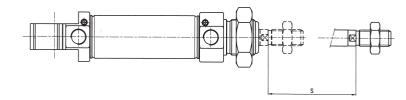

m = Bewegte Masse in kg

f = Bremskraft unter dynamischen Bedingungen in N

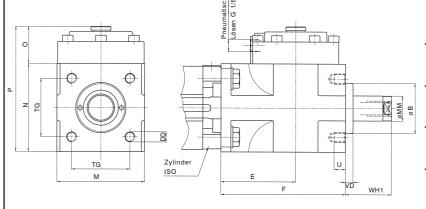
und ist das Ergebnis folgender Formel:


$$S = (V \cdot t) + \frac{m V^2}{2 f}$$


Beispiel: Feststelleinheit Größe 40, mit 10 kg bewegter Masse und einer Geschwindigkeit von 0.7~m/s

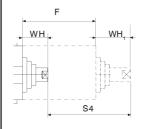


Feststelleinheit für Mikrozylinder Ø 16-20-25 mm


Zusatzlänge zur Standardkolbenstange

Zyl. Ø	АМ	В	BE	D	E	F	G1	H1	кк	KV	М	ММ	N	0	Р	Q	R	s	U
16	16	16	M16 x 1,5	10	35	61	1,5	7	M6 x 1	es. 24	40	6	40	34,5	74,5	27	M5	55	7,5
20	20	22	M22 x 1,5	10	35	61	4	9	M8 x 1,25	es. 32	40	8	40	34,5	74,5	27	M5	55	7,5
25	22	22	M22 x 1,5	10	35	61	4	13	M10 x 1,25	es. 32	40	10	40	34,5	74,5	27	M5	55	7,5

Feststelleinheit für Kompaktzylinder STRONG Ø 32 \div 63 mm

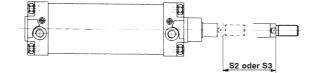

Befestigungsschrauben Dübel UNI 5973 Unterlegsscheibe und Mutter UNI 5589

Zyl. Ø	Kleinteile	Anzahl	Мав	Artikelnr.
	Dübel	4	M6x30	AZ4-VS0630
32	Unterlegscheibe	4	6,4 x 16	AZ4-SR06,41,6
	Mutter	4	M 6 x 1	AZ4-SO0064
	Dübel	4	M6x30	AZ4-VS0630
40	Unterlegscheibe	4	6,4 x 1,6	AZ4-SR06,41,6
	Mutter	4	M6x1	AZ4-SO0064
	Dübel	4	M8x40	AZ4-VS0840
50	Unterlegscheibe	4	8,4 x 1,6	AZ4-SR841,6
	Mutter	4	M8x1,25	AZ4-SH08125
	Dübel	4	M8x40	AZ4-VS0840
63	Unterlegscheibe	4	8,4 x 1,6	AZ4-SR8,41,6
	Mutter	4	M8x1,25	AZ4-SH08125

Ø	В	DD	E	F	M	MM	N	0	Р	TG	U	VD	WH1
32	30	M6	54,5	84	50	12	50	29,5	79,5	32,5	10	6	14
40	35	M6	58	90	58	16	58	29,5	87,5	38	9	6	14
50	40	M8	60	100	70	20	70	29	99	46,5	10	6	18
63	45	M8	65	110	85	20	85	37	122	56,5	13	6	18

Zusatzlänge zur Standardkolbenstange mit ISO Überstand

Zyl. Ø	WH	F	WH,	S 4
32	14	84	26	96
40	14	90	30	106
50	18	100	37	119
63	18	110	37	129

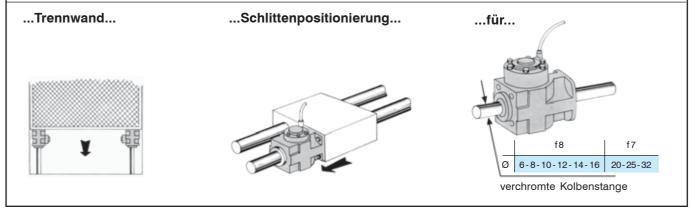


Feststelleinheit für Zylinder ISO Ø 32 ÷ 125

Überstand nach ISO Reduzierter Überstand Pneumatisches Lösen G 1/8 Zylinder ISO T-4 durchgehende Bohrungen

Zusatzlänge zur Standardkolbenstange

- S₁ für Abmessungen nach ISO
- S2 für reduzierte Abmessungen



Zyl. Ø	АМ	В	DD	E	F	H1	KK	М	ММ	N	0	Р	S1	S2	TG	U	VD	wн
32	22	30	M6	54,5	84	16	M10 x 1,25	50	12	50	29,5	79,5	85	75	32,5	10	6	26
40	24	35	M6	58	90	15	M12 x 1,25	58	16	58	29,5	87,5	90	75	38	9	6	30
50	32	40	M8	60	100	17	M16 x 1,5	70	20	70	29	99	100	80	46,5	10	6	37
63	32	45	M8	65	110	17	M16 x 1,5	85	20	85	37	122	110	90	56,5	13	6	37
80	40	45	M10	75	125	21	M20 x 1,5	100	25	100	40,5	140,5	125	100	72	16	8	46
100	40	55	M10	90	152	26	M20 x 1,5	116	25	120	59	179	150	125	89	18	8	51
125	54	60	M12	112,5	185	35	M27 x 2	145	32	145	62	207	185	155	110	22	9,5	65

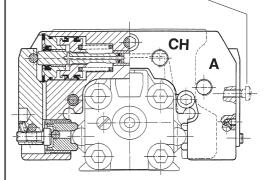
Sechskantschraube UNI 5739 und Unterlegsscheibe UNI 6592 zur Befestigung der Feststelleinheit am ISO-Zylinder.

Zyl. Ø		Anzahl	Мав	Тур
32	Schrauben	4	M6 x 16	AZ4-VE0616
32	Unterlegsscheibe	4	6,4 x 1,6	AZ4-SR06,41,6
40	Schrauben	4	M6 x 20	AZ4-VE0620
40	Unterlegsscheibe	4	6,4 x 1,6	AZ4-SR06,41,6
50	Schrauben	4	M8 x 20	AZ4-VE0820
30	Unterlegsscheibe	4	8,4 x 1,6	AZ4-SR08,41,6
63	Schrauben	4	M8 x 25	AZ4-VE0825
00	Unterlegsscheibe	4	8,4 x 1,6	AZ4-SR08,41,6
80	Schrauben	4	M10 x 30	AZ4-VE1030
80	Unterlegsscheibe	4	10,5 x 2	AZ4-SR10,52,0
100	Schrauben	4	M10 x 30	AZ4-VE1030
100	Unterlegsscheibe	4	10,5 x 2	AZ4-SR10,52,0
125	Schrauben	4	M12 x 35	AZ4-VE1235
123	Unterlegsscheibe	4	13 x 2,5	AZ4-SR13,02,5

...andere Anwendungsbeispiele für die Feststelleinheit...

Feststelleinheit

Die UNIVER Feststelleinheit für kolbenstangenlose Zylinder hat die Funktion, den Schlitten in einem beliebigen Punkt des Hubs festzuhalten und ihre Feststellpräzision ist gut.

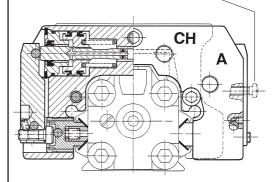

Sie kann wahllos auf beiden Seiten des Schlittens montiert werden und ihre mechanische Bremskraft kann mit Hilfe einer eventuellen zusätzlichen pneumatischen Steuerung weiter verstärkt werden.

Betriebsmedium: gefilterte Druckluft,

mit oder ohne Schmierung Betriebsdruck: 4,5 ÷ 10 bar Betriebstemperatur: -20° ÷ 80°C

Feststellung für Serie S5

Manuelles Lösen Schraube M 5x12



Maximale Rückhaltekraft (N)

Zyl. Ø	
25	810
32	1185
40	825
50	1235

Feststellung für Serie VL1

Manuelles Lösen Schraube M 5x12

Maximale Rückhaltekraft (N)

Zyl. Ø	
25	520
32	745
40	1465
50	2365

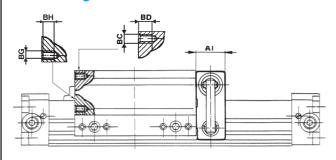
BESONDERE EIGENSCHAFTEN

- * Mindestlösedruck 4,5 bar
- * Schlittenblockierung in beiden Richtungen
- * Einfache Montage, auf beiden Seiten der Feststelleinheit möglich
- * Manuelles Lösen, permanent, durch Festschrauben von 2 M5 Schrauben

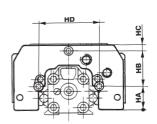
Zyl.	Ø	25	32	40	50
A =	СН	M5	(G 1/8	3

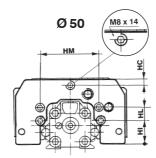
A = Lösen Ch = pneumatische Feststellung

* Serienmäßig in einer einzigen Version lieferbar: Feststellen mit mechanischen Federn, die den Schlitten in Abwesenheit des Druckluftsignals blockieren (1). Zur Verstärkung der Feststellkraft ist dieses Modell schon für die zusätzliche pneumatische Steuerung (2) ausgelegt.

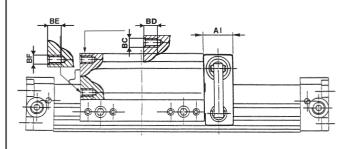


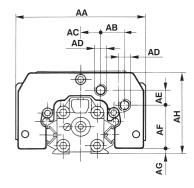
Feststellung für Serie S5



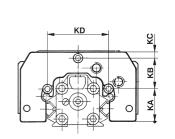

															IVIASSE N	9	
Zyl. Ø	AA	AB	AC	AD	ΑE	AF	AG	AH	ΑI	BC	BD	BG	ВН	Hub "0"+	Feststell-	-Gesamt	Artikelnr.
															ung		
25	120	24,5	12,5	M5	16,5	34,5	5	71,5	32	M6	15	M6	15	1,625	0,35	1,975	L6 - S5025
32	132	25,3	17	G 1/8	16,2	42,3	6,5	81,5	32	M6	15	M6	15	2,775	0,46	3,235	L6 - S5032
40	150	26	17	G 1/8	18,2	58,3	10	106	40	M6	15	M6	15	6,095	0,82	6,915	L6 - S5040
50	164	26	20	G 1/8	19,8	72,5	12,7	125,7	51	M8	16	M6	15	10,03	1,45	11,480	L6 - S5050

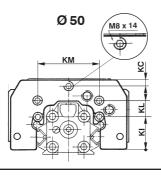
Maße für die Befestigung


Zyl. Ø	НА	НВ	нс	HD	HI	HL	нм
25	24,7	34,8	7	59,5	-	-	-
32	27	41,5	6,5	68	-	-	-
40	45,3	43,8	6,9	81,5	-	-	-
50	-	-	12	-	36,5	22,5	96



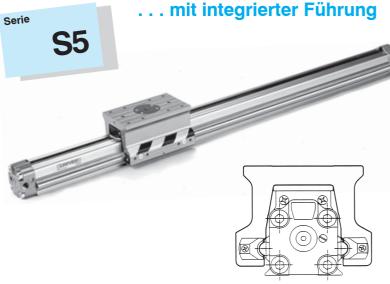
Feststellung für Serie VL1




														IV	iasse kg	<u> </u>	
Zyl. Ø	AA	AB	AC	AD	AE	AF	AG	АН	AI	ВС	BD	BE	BF	Hub "0" +	Feststel- lung	=Gesamt	Artikelnr.
25	120	24,5	12,5	M5	16,5	34,5	7,1	73,6	32	M6	10	M6	10	2,095	0,35	2,445	L6 - V1025
32	132	25,3	17	G 1/8	16,2	42,3	6,5	81,5	32	M6	10	M6	10	3,125	0,46	3,585	L6 - V1032
40	150	26	17	G 1/8	18,2	58,3	9	105	40	M6	15	M6	15	6,43	0,82	7,25	L6 - V1040
50	164	26	20	G 1/8	19,8	72,5	12,7	125,7	51			M6	12	10,85	1,45	12,3	L6 - V1050

Maße für die Befestigung

Zyl. Ø	KA	KB	KC	KD	KI	KL	KM
25	31,5	28	7	52	-	-	-
32	35	33,5	6,5	64	-	-	-
40	45,3	43,8	6,9	81,5	-	-	-
50	-	-	12	-	36,5	22,5	96


Ø 25 - 32 - 40

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminiumextrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Verschiedene Speisungsmöglichkeiten der Zylinderköpfe.
- ✓ Verschiedene Schlittenausführungen.
- ✓ Hohe Translationsgeschwindigkeit 1 ÷ 3 m/s.

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminium extrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Flexibles Führungssystem.
- ✓ Schlittengleiten mit Plastik-Führungsschuhen auf Stahlstangen.
- ✓ Translationsgeschwindigkeit 0,2 ÷ 1,5 m/s.
- Möglichkeit zum Anbau einer Feststelleinheit.

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminium extrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Schwere Präzisionsausführung.
- ✓ Starres Führungssystem.
- ✓ Schlittengleiten auf Kugellager.
- ✓ Translationsgeschwindigkeit 0,2 ÷ 2 m/sec.
- Möglichkeit zum Anbau einer Feststelleinheit.

TECHNISCHE DATEN

Betriebsdruck: 3 - 10 bar max

Umgebungstemperatur: -20° ÷ +80°C

Medium: gefilterte Druckluft, auch ungeölt bis Hub 500 mm

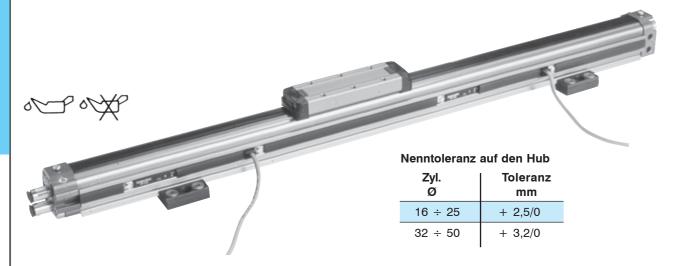
Durchmesser: Ø 16 - 25 - 32 - 40 - 50 mm Standardhublängen: bis 5 m (Ø 16 mm) bis 6 m (\emptyset 25 ÷ 50 mm)

Mindestgeschwindigkeit mit einheitlicher Translation: 7 ÷ 20 mm/s

Translationsgeschwindigkeit: 3 m/s (max)

Schlittentypen: Standard, mittellang, lang, doppelt mittellang Serie S5: runde Stangen aus Stahl Integrierte Führungen:

Serie VL1: Stahllamellen 90°


Externe Schlittengleitung:Serie S5: mit

Kunsstoffgleitschuhen

Serie S5: auf Kungellagern

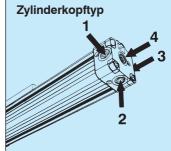
Ausführungen auf Anfrage

- Magnetausführung für Serie S1 (ausgeuommen Ø 16 Standardmagnetausführung); für Seria S5 ist eine spezielle Magnethalterung Serie DKS vorgesehen (Abschnitt Zubehör Seite 6-V)
- Magnetsensor Serie DH-... DF-... (Ø 16) (Abschnitt Zubehör Seite 2-V)
- Führungseinheit mit Standardschlitten oder langen Schlitten für Seite S1 (Serie J30 - J31) Seite 47
- Feststelleiuheit für Serie S5 VL1 (Serie L6) Seite 7.

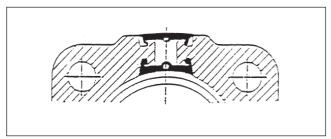
Die Zylinderköpfe sind aus Leichtaluminium-Druckguß und ermöglichen verschiedene Anschlußlösungen (siehe untenstehende Zeichnung).

Das besondere Befestigungssystem der Bänder erlaubt Montage und Demontage ohne Schlüssel und ohne irgendeine Regulierung der Verschraubung.

Ø 16 mm



Doppelte Speisung seitlich


Doppelte Speisung hinten

Ø 25 ÷ 50 mm

- 0 = kein Anschluß (nur linker Zylinderkopf, wenn die Kammern von rechts angeschlossen sind)
- 1 = seitlich
- 2 = bodenseitig
- 3 = hinten
- 4 = beide Kammern von einem Zylinderkopf aus

Längsabdichtungssystem. Die pneumatische Abdichtung wird durch ein axiales, elastisches, durch einen Kevlar-Einsatz verstärktes Band und mit einer ähnlichen An triebsgrenze von ca 2 % gewährleistet. Dieses System erlaubt eine Maßstabilität, auch bei Translationsgeschwindigkeit. Der äußere Schutz besteht aus einem thermoplastischen Band, dessen Innenteil mit Kevlar verstärkt ist.

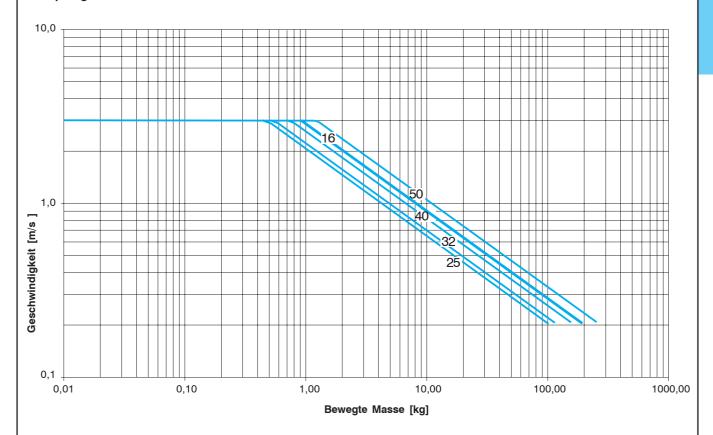
Die Kolbenschlitteneinheit hat ein gezogenes Profil aus Aluminiumlegierung mit Führungsschuhen thermoplastischem Material. Die Kolbendichtung in Doppellippenform gewährt eine hohe Verschleißfestigkeit; Anfrage kann der Kolben Permanentmagneten ausgerüstet werden (nur Serie S1). Das Zylinderrohr hat ein gezogenes Profil aus

Aluminiumlegierung und ist innen und außen eloxiert.

Einstellbare pneumatische Dämpfung: je zwei Drosselschrauben pro Zylinderkopf erlauben eine bessere Regulierung der Kolbendämpfung.

Mechanische Endanschläge vermindern die mechanische Beanspruchung und senken somit den Betriebslärmpegel (< 50 dB).

Prüfung und Kontrolle der Dämpfung


In einem System mit bewegten Massen, wie es beim Einsatz von kolbenstangenlosen Zylindern meist gegeben ist, ist es von großer Bedeutung, die kinetische Energie während des Verzögerungsvorganges bis zum Stillstand zu beherrschen. Unter dieser Voraussetzung ist es als erstes notwendig, die für das jeweilige System am besten geeignete Dämpfung herauszufinden und festzulegen, um zu vermeiden, daß die bewegte Masse (Schlitten mit Last) nicht ungebremst auf die Zylinderköpfe auffährt und somit die Lebensdauer des Zylinders beeinträchtigt. Wenn sich der Schnittpunkt von Last und Geschwindigkeit **unterhalb** der Dämpfungskurve des betreffenden Zylinders befindet, ist die Dämpfung in der Lage, die kinetische Energie zu absorbieren.

Befindet sich der Schnittpunkt jedoch **oberhalb** der Kurve, ist die Dämpfung **nicht imstande**, **die kinetische Energie zu absorbieren**, und es ist daher unbedingt notwendig:

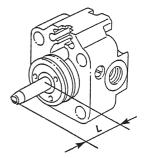
- a) die Last unter Beibehaltung der Translationsgeschwindigkeit zu verringern,
- b) die Geschwindigkeit unter Beibehaltung der Last zu verringern,
- c) einen Zylinder mit größerem Durchmesser zu wählen.

Die Dämpfungskapazität wird im untenstehenden Diagramm in Bezug auf die Endgeschwindigkeit des Schlittens, der sich den Zylinderköpfen nähert, dargestellt.

Dämpfung für Serie S1 - S5 - VL1

Aufgrund dieser Überlegungen, wenn die kinetische Energie nicht von der Zylinderkopfdämpfung absorbierbar ist und wenn es nicht möglich ist, die Parameter zu ändern (A - B - C, auf Seite 46), ist die Anbringung einer zusätzlichen Dämpfung unbedingt notwendig, um vor der Zylinderdämpfung eine Geschwindigkeitsverringerung der Last zu erhalten.

Diese Dämpfung kann sein:


- pneumatisch, mit elektronischem Impuls, Serie LX 7160, von UNIVER geplant und erstellt (Seite 90-91),
- hydraulisch, im Handel erhältlich.

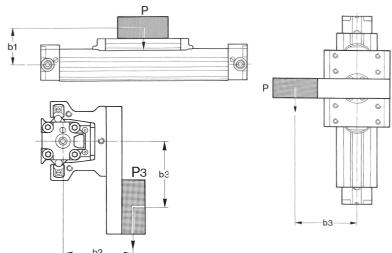
Die Bewegung von Massen führt auf dem Zylinder nicht nur zu konstanten Lasten, aufgrund der Gewichtskraft, sondern auch zu Drucklasten, ausgelöst durch die Trägheitskraft, die in den Beschleunigungsphasen des Kolbens am Anfang und am Ende eines Hubes entstehen.

Daraus resultiert eine typische Arbeitsbeanspruchung, bei der die Art der Last die Lebensdauer der Struktur beeinflußt. Die im folgenden angeführten Lasten beziehen sich auf eine Lebensdauer von 20000 km.

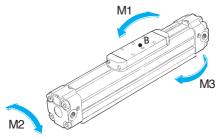
Die angeführten Lasten (auf den Seiten, die den relativen Serien entsprechen) sind die Höchstwerte der Kräfte und der Momente, die während der Beschleunigungsphasen erzeugt werden können. Um die Übereinstimmung einer Anwendung zu bewerten, müssen auch die Trägheitskräfte und die darauffolgenden Momente kalkuliert werden.

Zur Berechnung der Trägheitskräfte muß vor allem die Länge L der Dämpfungsstrecke bekannt sein. Bei Verwendung einer pneumatischen Dämpfung für die Zylinderköpfe ergibt sich:

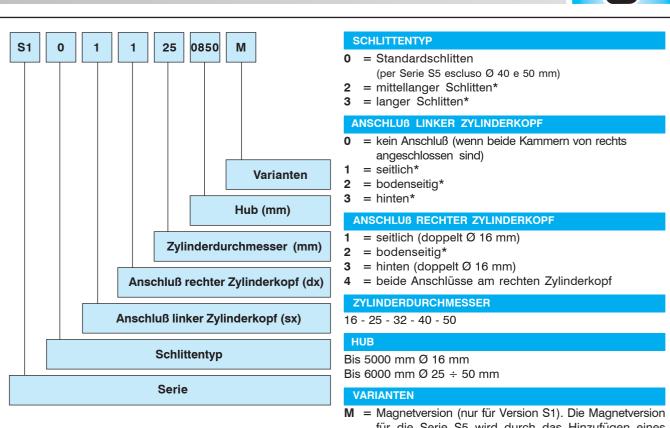
Ø (mm)	L (mm)
16	16,5
25	25,0
32	32,5
40	41,5
50	52,0


Weiter vorgegangen wird mit den üblichen mechanischen Formeln. Soll z.B. eine Masse M (kg) mit einer Geschwindigkeit V (m/s), die mit den Hebelarmen b₁, b₂ und b₃ (mm) in Bezug auf die Längsachse des Kolbens angeordnet ist, bewegt werden, erfolgt die Berechnung der Trägheitskraft F in Längsrichtung und der damit in Beziehung stehenden Momente wie folgt.

$$F(N) = M \cdot a = M \cdot \frac{V^2}{2 \cdot (L \cdot 10^{-3})}$$

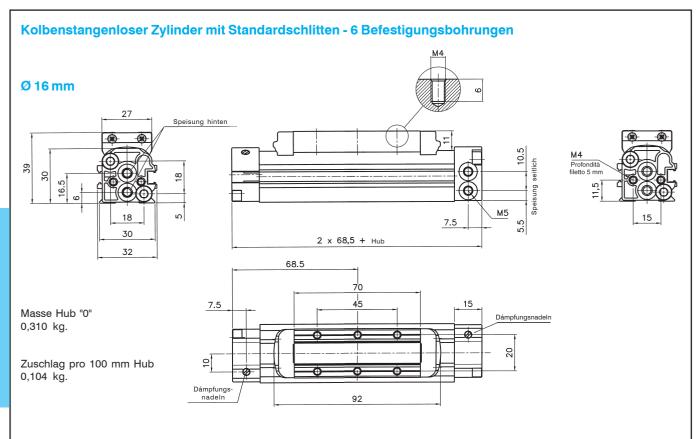

$$M_1 \cdot (Nm) = F \cdot (b_1 \cdot 10^{-3})$$

$$M_2 \cdot (Nm) = M \cdot g \cdot (b_2 \cdot 10^{-3})$$

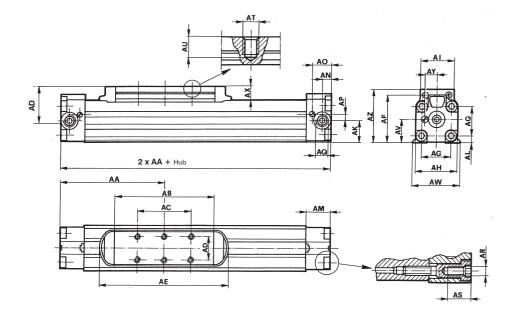

$$M_3 \cdot (Nm) = F \cdot (b_3 \cdot 10^{-3})$$

Während **F**, **M**₁ und **M**₃ sowohl statische als auch Trägheitskomponenten haben können, ist **M**₂ ausschließlich statischer Natur.

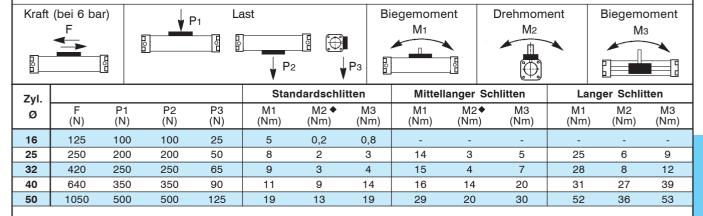
SERIE


- **S1** = Version mit 1 Kammer
- **S5** = Version mit integrierter Führung Führungsschuhe aus Kunststoff

M = Magnetversion (nur für Version S1). Die Magnetversion für die Serie S5 wird durch das Hinzufügen eines Schaltkanals der Serie DKS realisiert, der separat bestellt werden muß (siehe Abschnitt Seite 6)


^{*} mit Ausnahme von Ø 16 mm

Ø 25 ÷ 50 mm

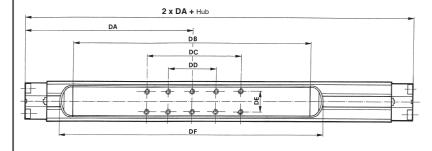


Zyl. Ø	AA	AB	AC	AD	ΑE	AF	AG	AH	ΑI	AK	AL	ΑM	AN	AO	AP	AQ	AR	AS	AT
25	100	95	50	24	130	48,3	28	40,5	33	20,2	7	24	7,4	18,2	5,7	G1/8	M5	12	M5
32	125	118	65	31	156	57	35	50	40	25,3	8	29	10,3	22,5	7,3	G1/4	M6	15,5	M6
40	150	134	65	31	177	74	44	64	44	33,8	11,8	33	12,5	26,5	8,7	G3/8	M8	20	M6
50	175	164	105	39	211	90,7	55	80	54	41,4	14,7	33	14,2	25,7	11,8	G3/8	M10	20	M8

Zyl. Ø	AU	ΑV	AW	AX	AY	ΑZ	Masse Kg Hub "0"	Zuschlang in kg pro 100 mm di Hub
25	9	22,8	42,8	16	12,2	57,6	0,750	0,210
32	9	28	54,5	16	14,2	66,2	1,310	0,325
40	11	37	67	19,5	16,5	85,8	2,600	0,555
50	12	47,7	86	20,5	19,1	103	4,785	0,955



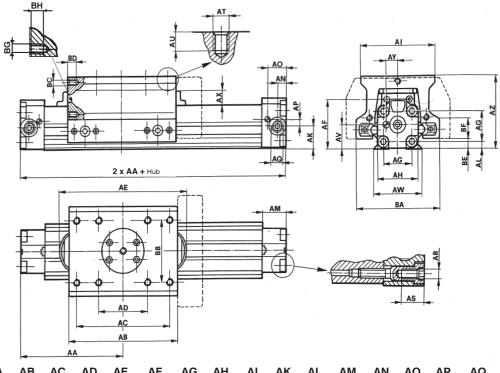
Werte bei statischer Belastung; unter dynamischen Bedingungen muß die Belastung bei Zunahme der Translationsgeschwindigkeit vermindert werden. Das Drehmoment ist das Produkt der Belastung (in Newton) mal Hebelarm (in Metern), der die Entfernung zwischen Belastungsschwerpunkt und Längsachse des Kolbens darstellt. (Technische Merkmale Seiten 11-17)


♦ Es wird davon abgeraten, den Zylinder mit großen Belastungen einzusetzen

Mittellanger Schlitten 6 Befestigungsbohrungen für Zylinder Ø 25 \div 50 mm

Zyl. Ø	CA	СВ	СС	CD	CE	Masse (Kg) Hub "0"
25	114,5	125	50	24	160	0,84
32	142,5	153	65	31	191	1,48
40	169	172	65	31	215	2,91
50	205	224	105	39	271	5,55

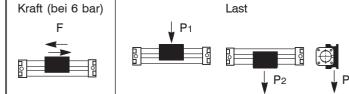
Langer Schlitten 10 Befestigungsbohrungen für Zylinder Ø 25 ÷ 50 mm


	Zyl.Ø	DA	DB	DC	DD	DE	DF	Masse (Kg) Hub "0"
	25	147,5	190	100	50	24	225	1,05
ĺ	32	190	248	130	65	31	286	1,93
	40	225	284	130	65	31	327	3,80
ĺ	50	277	364	315	105	39	411	7,33

ANMERKUNG: Sollte der kolbenstangenlose Zylinder an starren externen Führungen befestigt werden, **muß** am Schlitten ein Schwenklager (Serie SF - 24 ... siehe Seite 23-II) angebracht werden, damit der Zylinder von der starren tragenden Struktur gelöst wird.

Anderes Zubehör ab Seite 22-II.

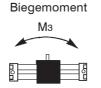
Flexibel geführte kolbenstangenlose Zylinder mit integrierter Führung und Standardschlitten 8 Befestigungsbohrungen



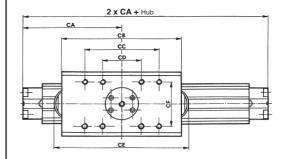
Z	'yl. Ø	AA	AB	AC	AD	AE	AF	AG	АН	AI	AK	AL	ÅM	AN	АО	AP	AQ	AR	AS	AT
	25	100	106	90	50	130	48,3	28	40,5	70	20,2	7	24	7,4	18,2	5,7	G 1/8	M5	12	M6
	32	125	140	115	55	156	57,0	35	50	88	25,3	8	29	10,3	22,5	7,3	G 1/4	M6	15,5	M8
-	40							44	64	90	33,8	11,8	33	12,5	26,5	8,7	G 3/8	M8	20	M8
į	50							55	80	100	41,4	14,7	33	14,2	25,7	11,8	G 3/8	M10	20	M8

Zyl. Ø	AU	AV	AW	АХ	AY	AZ	ВА	ВВ	вс	BD	BE	BF	ВG	вн	Masse Kg Hub "0"	Zuschlag in kg pro 100 mm di Hub
25	10	22,8	42,8	16	12,2	71,8	85	50	M6	15	5,7	24	M6	15	1,625	0,365
32	12	28	57	16	14,2	82,5	100	67,5	M6	15	7	24,5	M6	15	2,775	0,495
40	14	37	67	19,5	16,5	106,6	135	65	M6	15	7	39	M6	15		0,92
50	16	47,7	86	20,5	19,1	123,7	149	76,5	M8	16	7,2	41	M6	15		1,28

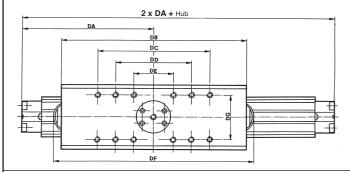
Die gestrichelte Linie zeigt die Lage der Festelleinheit an (Befestigungsbehrungen der Feststelleinheit siehe Seite 8-II)


Werte bei statischer Belastung; unter dynamischen Bedingungen muß die Belastung bei Zunahme der Translationsgeschwindigkeit vermindert werden. Das Drehmoment ist das Produkt der Belastung (in Newton) mal Hebelarm (in Metern), der die Entfernung zwischen Belastungsschwerpunkt und Längsachse des Kolbens darstellt.

Biegemoment



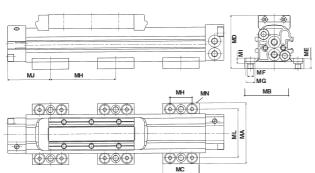
Zyl. Ø					Star	ndardschl	itten	Mittel	langer Scl	nlitten	Lar	nger Schlit	ten
	F	P1	P2	P3	M1	M2	МЗ	M1	M2	МЗ	M1	M2	МЗ
	(N)		(N)		(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)
25	250		400		13	8	16	20	10	25	40	15	50
32	420		400		20	9	27	30	12	40	55	18	75
40	640		600		nicl	nt vorgese	hen	60	30	80	110	45	150
50	1050		800		nicl	nt vorgese	hen	85	50	110	150	75	210



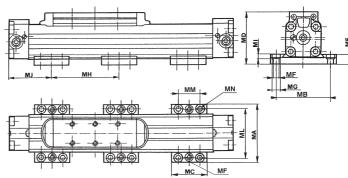
Mittellanger Schlitten 8 Befestigungsbohrungen

Zy	ı. Ø	CA	СВ	СС	CD	CE	CF	Masse (Kg) Hub "0"
2	5	114,5	136	90	50	160	50	1,93
3	2	142,5	175	115	55	191	67,5	3,265
4	0	169	205	180	75	215	65	6,095
5	0	205	258	190	80	271	76,5	10,03

Langer Schlitten 12 Befestigungsbohrungen


Zyl. Ø	DA	DB	DC	DD	DE	DF	DG	Masse (Kg) Hub "0"
25	147,5	201	130	90	50	225	50	2,64
32	190	270	175	115	55	286	67,5	4,65
40	225	317	280	185	75	327	65	8,60
50	277	398	320	200	80	411	76,5	14,04

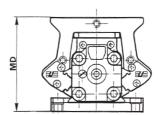
Zubehör ab Seite 22-II.



Befestigungsplatte für Serie S1

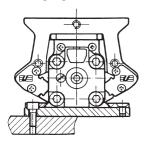
Ø 16 mm

Ø 25 ÷ 50 mm

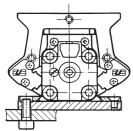

					MD											
Zyl. Ø	MA	MB	MC	S1	S5	VL1	ME	MF	MG	MH MI	MJ	ML*	MM	MN	Masse kg	Artikelnr.
16	50	40	30	44,8	-	-	9	M5	8	400 💠 4,5	35	40	-	M6	0,083	SF - 12016
25	78,5	63,5	50	65,6	79,8	82,3	12	M8	11	500 💠 6,5	55	65,5	30	M6	0,310	SF - 12025
32	92	77,5	50	74,2	90,5	90,5	12	M8	11	600 🕈 5,5	60	79,5	30	M6	0,340	SF - 12032
40	117	96	60	95,8	116,6	116	15	M10	14	700 🕈 8	70	96	37,5	M8	0,660	SF - 12040
50	136	115	60	113	133,7	136,2	15	M10	14	800 🌣 8	70	115	37,5	M8	0,700	SF - 12050

- ♦ Maximale Abmessungen zur Begrenzung der Durchbiegung des Zylinders unter Eigengewicht und für eine korrekte Befestigung.
- * Für Ø 16-40-50 mm haben MB und ML dieselben Werte

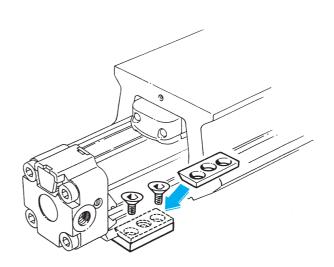
Befestigungsplatte für Serie S5


Befestigungsplatte für Serie VL1

Beispiel zur Befestigung der Platten:


Befestigung mit im Lieferumfang enthaltenen Schrauben ohne Demontage der einzelnen Zylinderteile (gilt für alle Serien).

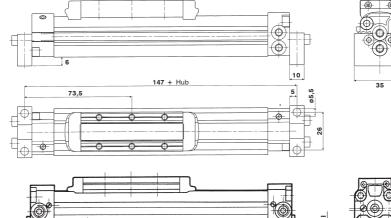
Befestigung oben

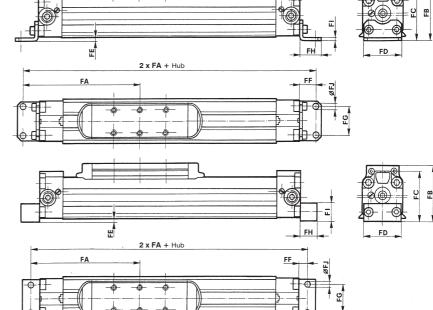


Zyl. Ø	
25 - 32	M6
40 - 50	M8

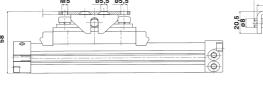
Befestigung unten

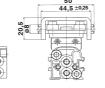
Zyl. Ø	
25 - 32	M8
40 - 50	M10

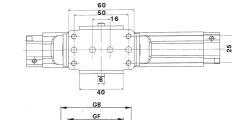

Fußbefestigung fur kolbenstangenlosen Zylinder Ø 16 mm, Typenbezeichung. SF-13016


Masse kg 0,015

o ,


	Zyl. Ø	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	Masse kg	Artikelnr.
	25	116	58,1	48,8	40	0,5	16	27	22	2.5	5,5	0,034	SF - 13025
	32	143,5	68,7	59,2	48	2,5	18,5	36	26	3	6,5	0,053	SF - 13032
_	40	162,5	86,5	74,9	63	0,7	12,5	30	25	25	9	0,116	SF - 13040
	50	187,5	104,3	92,4	79	1,3	12,5	40	25	30	9,3	0,170	SF - 13050

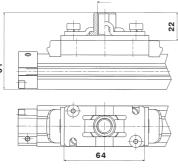

Fußbefestigungen werden **ausschließlich** für kurze Hublängen empfohlen (bis 400 mm)


Schwenklager

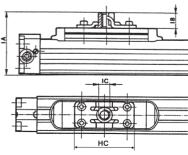
Ø 16 mm Cod. SF-24016

Masse Kg 0,195

Ø 25 ÷ 50 mm	øgg -	GE	40
5	GI ØGK	GD	GB GF
			GJ
8			± 000000000000000000000000000000000000


Zyl. Ø	GA	GB	GC	GD	GE	GF	GG	GH	GI	GJ	GK	GL	GM	GN	GO	Masse kg	Artikelnr.
25	$73,5/\pm2,5$	60	40	$44,5/\pm2,5$	50	50	5,5	25	M5	16	5,5	20,5	3	8	6,15	0,142	SF - 24025
32	89/±4	100	60	56/±4	64	80	5,5	30	M6	40	6,5	30	4	12	8,2	0,362	SF - 24032
 40	$108,5/\pm 4$	100	60	$56/\pm 4$	64	80	5,5	30	M6	40	6,5	30	4	12	8,2	0,362	SF - 24032
50	nicht vorge	sehen															

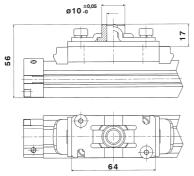
Anschluß mit Innengewinde


Ø 16 mm

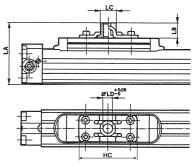
Masse Kg 0,132

M12

Ø 25 ÷ 50 mm



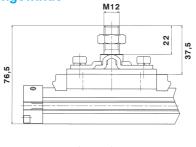
Zyl. Ø	IA	IB	IC	нс	Masse kg	Artikelnr.
25	75,6	18	M12	64	0,076	SF-26025
32	87,2	21	M14	84	0,157	SF-26032
40	106,8	21	M14	84	0,157	SF-26032
50	nicht	vorge	sehen			

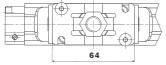

Anschluß ohne Innengewinde

Ø 16 mm

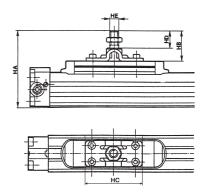
Masse Kg 0,129

Ø 25 ÷ 50 mm



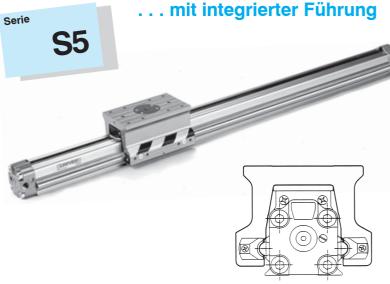

Zyl. Ø	LA	LB	LC	LD	нс	Masse kg	Artikelnr.
25	70,6	13	18	10	64	0,073	SF-28025
32	83,4	17,2	22	12	84	0,152	SF-28032
40	103	17,2	22	12	84	0,152	SF-28032
50	nicht	vorg	esehe	en			

Bolzen mit Außengewinde


Ø 16 mm

Masse Kg 0,160

Ø 25 ÷ 50 mm



Zyl. Ø	на	нв	нс	HD	HE	Masse kg	Artikelnr.
25	91,1	33,5	64	22	M12	0,105	SF-27025
32	107,7	41,5	84	24,3	M14	0,26	SF-27032
40	127,3	41,5	84	24,3	M14	0,26	SF-27032
50	nicht	vorge	seher	า			
30	mont	vorge	361161	'			

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminiumextrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Verschiedene Speisungsmöglichkeiten der Zylinderköpfe.
- ✓ Verschiedene Schlittenausführungen.
- ✓ Hohe Translationsgeschwindigkeit 1 ÷ 3 m/s.

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminiumextrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Flexibles Führungssystem.
- ✓ Schlittengleiten mit Plastik-Führungsschuhen auf Stahlstangen.
- ✓ Translationsgeschwindigkeit 0,2 ÷ 1,5 m/s.
- Möglichkeit zum Anbau einer Feststelleinheit.

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminium extrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Schwere Präzisionsausführung.
- ✓ Starres Führungssystem.
- ✓ Schlittengleiten auf Kugellager.
- ✓ Translationsgeschwindigkeit 0,2 ÷ 2 m/sec.
- Möglichkeit zum Anbau einer Feststelleinheit.

TECHNISCHE DATEN

Betriebsdruck: 3 - 10 bar max

Umgebungstemperatur: -20° ÷ +80°C

Medium: gefilterte Druckluft, auch ungeölt bis Hub 500 mm

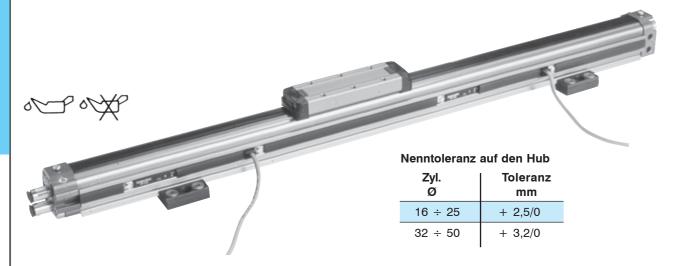
Durchmesser: Ø 16 - 25 - 32 - 40 - 50 mm Standardhublängen: bis 5 m (Ø 16 mm) bis 6 m (\emptyset 25 ÷ 50 mm)

Mindestgeschwindigkeit mit einheitlicher Translation: 7 ÷ 20 mm/s

Translationsgeschwindigkeit: 3 m/s (max)

Schlittentypen: Standard, mittellang, lang, doppelt mittellang Serie S5: runde Stangen aus Stahl Integrierte Führungen:

Serie VL1: Stahllamellen 90°


Externe Schlittengleitung:Serie S5: mit

Kunsstoffgleitschuhen

Serie S5: auf Kungellagern

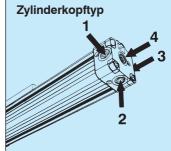
Ausführungen auf Anfrage

- Magnetausführung für Serie S1 (ausgeuommen Ø 16 Standardmagnetausführung); für Seria S5 ist eine spezielle Magnethalterung Serie DKS vorgesehen (Abschnitt Zubehör Seite 6-V)
- Magnetsensor Serie DH-... DF-... (Ø 16) (Abschnitt Zubehör Seite 2-V)
- Führungseinheit mit Standardschlitten oder langen Schlitten für Seite S1 (Serie J30 - J31) Seite 47
- Feststelleiuheit für Serie S5 VL1 (Serie L6) Seite 7.

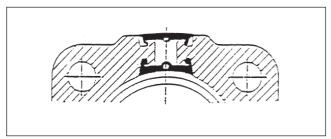
Die Zylinderköpfe sind aus Leichtaluminium-Druckguß und ermöglichen verschiedene Anschlußlösungen (siehe untenstehende Zeichnung).

Das besondere Befestigungssystem der Bänder erlaubt Montage und Demontage ohne Schlüssel und ohne irgendeine Regulierung der Verschraubung.

Ø 16 mm



Doppelte Speisung seitlich


Doppelte Speisung hinten

Ø 25 ÷ 50 mm

- 0 = kein Anschluß (nur linker Zylinderkopf, wenn die Kammern von rechts angeschlossen sind)
- 1 = seitlich
- 2 = bodenseitig
- 3 = hinten
- 4 = beide Kammern von einem Zylinderkopf aus

Längsabdichtungssystem. Die pneumatische Abdichtung wird durch ein axiales, elastisches, durch einen Kevlar-Einsatz verstärktes Band und mit einer ähnlichen An triebsgrenze von ca 2 % gewährleistet. Dieses System erlaubt eine Maßstabilität, auch bei Translationsgeschwindigkeit. Der äußere Schutz besteht aus einem thermoplastischen Band, dessen Innenteil mit Kevlar verstärkt ist.

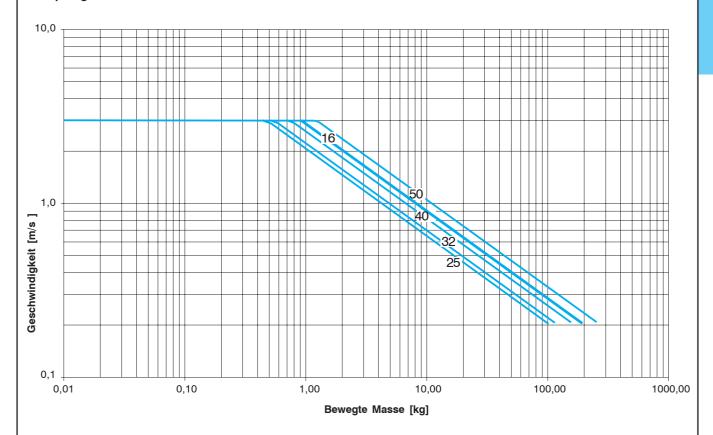
Die Kolbenschlitteneinheit hat ein gezogenes Profil aus Aluminiumlegierung mit Führungsschuhen thermoplastischem Material. Die Kolbendichtung in Doppellippenform gewährt eine hohe Verschleißfestigkeit; Anfrage kann der Kolben Permanentmagneten ausgerüstet werden (nur Serie S1). Das Zylinderrohr hat ein gezogenes Profil aus

Aluminiumlegierung und ist innen und außen eloxiert.

Einstellbare pneumatische Dämpfung: je zwei Drosselschrauben pro Zylinderkopf erlauben eine bessere Regulierung der Kolbendämpfung.

Mechanische Endanschläge vermindern die mechanische Beanspruchung und senken somit den Betriebslärmpegel (< 50 dB).

Prüfung und Kontrolle der Dämpfung


In einem System mit bewegten Massen, wie es beim Einsatz von kolbenstangenlosen Zylindern meist gegeben ist, ist es von großer Bedeutung, die kinetische Energie während des Verzögerungsvorganges bis zum Stillstand zu beherrschen. Unter dieser Voraussetzung ist es als erstes notwendig, die für das jeweilige System am besten geeignete Dämpfung herauszufinden und festzulegen, um zu vermeiden, daß die bewegte Masse (Schlitten mit Last) nicht ungebremst auf die Zylinderköpfe auffährt und somit die Lebensdauer des Zylinders beeinträchtigt. Wenn sich der Schnittpunkt von Last und Geschwindigkeit **unterhalb** der Dämpfungskurve des betreffenden Zylinders befindet, ist die Dämpfung in der Lage, die kinetische Energie zu absorbieren.

Befindet sich der Schnittpunkt jedoch **oberhalb** der Kurve, ist die Dämpfung **nicht imstande**, **die kinetische Energie zu absorbieren**, und es ist daher unbedingt notwendig:

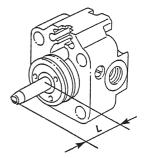
- a) die Last unter Beibehaltung der Translationsgeschwindigkeit zu verringern,
- b) die Geschwindigkeit unter Beibehaltung der Last zu verringern,
- c) einen Zylinder mit größerem Durchmesser zu wählen.

Die Dämpfungskapazität wird im untenstehenden Diagramm in Bezug auf die Endgeschwindigkeit des Schlittens, der sich den Zylinderköpfen nähert, dargestellt.

Dämpfung für Serie S1 - S5 - VL1

Aufgrund dieser Überlegungen, wenn die kinetische Energie nicht von der Zylinderkopfdämpfung absorbierbar ist und wenn es nicht möglich ist, die Parameter zu ändern (A - B - C, auf Seite 46), ist die Anbringung einer zusätzlichen Dämpfung unbedingt notwendig, um vor der Zylinderdämpfung eine Geschwindigkeitsverringerung der Last zu erhalten.

Diese Dämpfung kann sein:


- pneumatisch, mit elektronischem Impuls, Serie LX 7160, von UNIVER geplant und erstellt (Seite 90-91),
- hydraulisch, im Handel erhältlich.

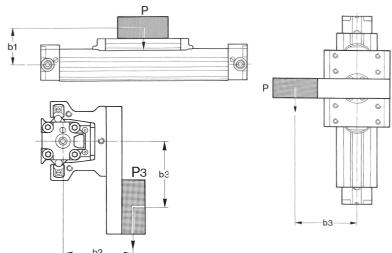
Die Bewegung von Massen führt auf dem Zylinder nicht nur zu konstanten Lasten, aufgrund der Gewichtskraft, sondern auch zu Drucklasten, ausgelöst durch die Trägheitskraft, die in den Beschleunigungsphasen des Kolbens am Anfang und am Ende eines Hubes entstehen.

Daraus resultiert eine typische Arbeitsbeanspruchung, bei der die Art der Last die Lebensdauer der Struktur beeinflußt. Die im folgenden angeführten Lasten beziehen sich auf eine Lebensdauer von 20000 km.

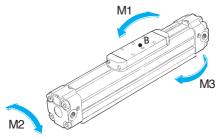
Die angeführten Lasten (auf den Seiten, die den relativen Serien entsprechen) sind die Höchstwerte der Kräfte und der Momente, die während der Beschleunigungsphasen erzeugt werden können. Um die Übereinstimmung einer Anwendung zu bewerten, müssen auch die Trägheitskräfte und die darauffolgenden Momente kalkuliert werden.

Zur Berechnung der Trägheitskräfte muß vor allem die Länge L der Dämpfungsstrecke bekannt sein. Bei Verwendung einer pneumatischen Dämpfung für die Zylinderköpfe ergibt sich:

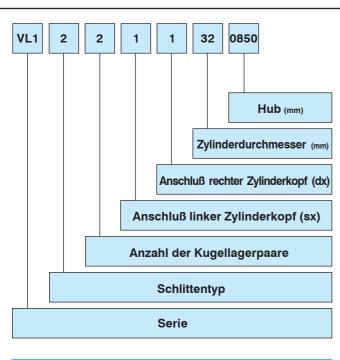
Ø (mm)	L (mm)
16	16,5
25	25,0
32	32,5
40	41,5
50	52,0


Weiter vorgegangen wird mit den üblichen mechanischen Formeln. Soll z.B. eine Masse M (kg) mit einer Geschwindigkeit V (m/s), die mit den Hebelarmen b₁, b₂ und b₃ (mm) in Bezug auf die Längsachse des Kolbens angeordnet ist, bewegt werden, erfolgt die Berechnung der Trägheitskraft F in Längsrichtung und der damit in Beziehung stehenden Momente wie folgt.

$$F(N) = M \cdot a = M \cdot \frac{V^2}{2 \cdot (L \cdot 10^{-3})}$$


$$M_1 \cdot (Nm) = F \cdot (b_1 \cdot 10^{-3})$$

$$M_2 \cdot (Nm) = M \cdot g \cdot (b_2 \cdot 10^{-3})$$


$$M_3 \cdot (Nm) = F \cdot (b_3 \cdot 10^{-3})$$

Während **F**, **M**₁ und **M**₃ sowohl statische als auch Trägheitskomponenten haben können, ist **M**₂ ausschließlich statischer Natur.

SERIE Standard

VL1 = Version mit integrierten Führungen 90°, Kugellager

SCHLITTENTYP

2 = mittellanger Schlitten

3 = langer Schlitten

4 = doppelter mittellanger Schlitten

SERIE VL ANZAHL DER IM LIEFERUMFANG ENTHALTENEN KUGELLAGERPAARE

Zyl.	Schlitten							
Zyl. Ø	Mittellang	Lang						
25	2	3						
32	2	3						
40	2	3						
50	3	4						

ANSCHLUB LINKER ZYLINDERKOPF

 kein Anschluß

 (wenn beide Kammern von rechts angeschlossen sind)

1 = seitlich2 = bodenseitig3 = hinten

ANSCHLUß LINKER ZYLINDERKOPF

1 = seitlich

2 = bodenseitig

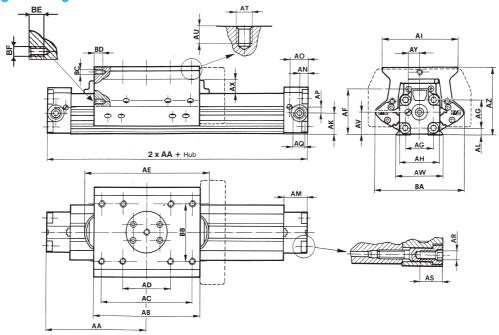
3 = hinten

4 = beide Anschlüsse am rechten Zylinderkopf

ZYLINDERDURCHMESSER

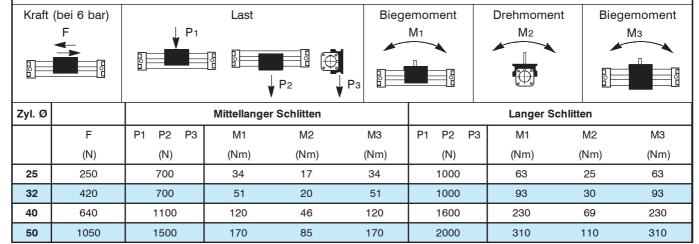
25 - 32 - 40 - 50

HUB


Länge in mm

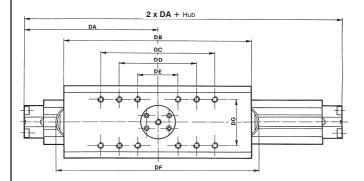
Die Magnetversion wird durch das Hinzufügen eines magnetischen Schalterkanals der Serie DKS realisiert, der separat bestellt werden muß (siehe Abschnitt Zubehör Seite 6).

Kolbenstangenlose Zylinder mit integrierter Führung 90° mit mittellangem Schlitten 8 Befestigungsbohrungen

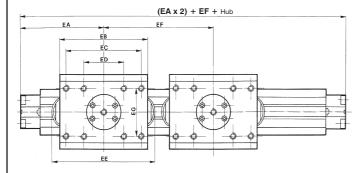


Zyl. Ø	AA	АВ	AC	AD	AE	AF	AG	АН	ΑI	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT
25	114,5	136	90	50	160	48,3	28	40,5	83,5	20,2	7	24	7,4	18,2	5,7	G 1/8	M5	12	M6
32	142,5	175	115	55	191	57	35	50	92	25,3	8	29	10,3	22,5	7,3	G 1/4	M6	15,5	M8
40	169	205	180	75	215	74	44	64	125	33,8	11,8	33	12,5	26,5	8,7	G 3/8	M8	20	M8
50	207	258	190	80	271	90,7	55	80	140	41,4	14,7	33	14,2	25,7	11,8	G 3/8	M10	20	M8

Zyl. Ø	AU	AV	AW	АХ	AY	AZ	ВА	ВВ	вс	BD	BE	BF	Masse kg Hub "0"	Zuschlag in kg pro 100 mm Hub
25	12	22,8	42,8	16	12,2	74,3	111	50	M6	10	M6	10	2,095	0,3
32	12	28	57	16	14,2	82,5	118	67,5	M6	10	M6	10	3,125	0,415
40	14	37	67	19,5	16,5	106	158	65	M6	15	M6	15	6,34	0,67
50	15	47,7	86	20,5	19,1	126,2	173	100	-	-	M6	12	10,85	1,02


Die gestrichelte Linie zeigt die Einbaumaße der Festelleinheit an; Befestigungsbohrungen der Feststelleinheit siehe Seiten 8-11.

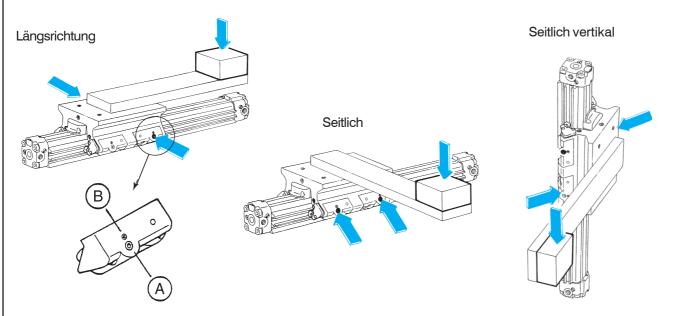
Werte bei statischer Belastung; unter dynamischen Bedingungen muß die Belastung bei Zunahme der Translationsgeschwindigkeit vermindert werden. Das Drehmoment ist das Produkt der Belastung (in Newton) mal Hebelarm (in Metern), der die Entfernung zwischen Belastungsschwerpunkt und Längsachse des Kolbens darstellt.



Langer Schlitten - 12 Befestigungsbohrungen

Zyl. Ø	DA	DB	DC	DD	DE	DF	DG	Masse kg Hub "0"
25	147,5	201	130	90	50	225	50	2,855
32	67,5	270	175	115	55	286	67,5	4,41
40	67,5	317	280	185	75	327	65	8,955
50	277	398	320	200	80	411	100	15,365

Doppelter mittellanger Schlitten - 8 Befestigungsbohrungen pro Schlitten

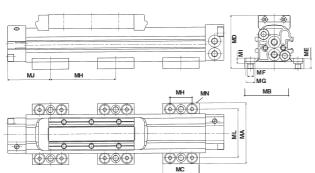

Zyl. Ø	EA	EB	EC	ED	EE	EF	EG	Masse kg Hub "0"
25	114,5	136	90	50	160	164	50	3,88
32	142,5	175	115	55	191	206	67,5	5,75
40	169	205	180	75	215	243	65	11,65
50	207	258	190	80	271	316	100	20,15

Die Schlitten werden bearbeitet.

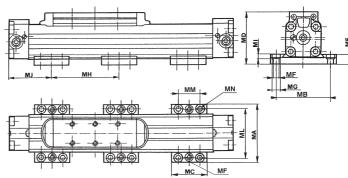
Bitte versichern Sie sich, daß die Montageplatte, die eventuell an die Schlitten geschraubt wird, ebenfalls bearbeitet wird, damit die Funktionsweise des Systems nicht beeinträchtigt wird. **Zubehör Seite 22-II.**

Einstellung des Schlittens

Bei außermittigen Kräften auf den Zylinder müssen die Madenschrauben (A) folgendermaßen eingestellt werden.



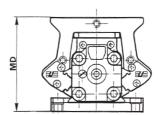
Die Pfeile kennzeichnen die Madenschrauben an den Seiten, die eingestellt werden müssen, je nachdem, in welcher Position sich die Last P befindet. Schrauben Sie die durch die Pfeile angegebenen (A)-Schrauben mit einer oder mehreren Drehungen, je nach Last, an. Die Schraube (B) ist mit einem Tropfen Loctite 242 fest zu sichern; anschließend sind alle Schrauben um 90° zu lösen.



Befestigungsplatte für Serie S1

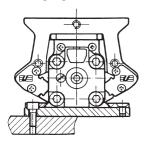
Ø 16 mm

Ø 25 ÷ 50 mm

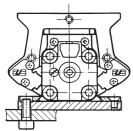

					MD											
Zyl. Ø	MA	MB	MC	S1	S5	VL1	ME	MF	MG	MH MI	MJ	ML*	MM	MN	Masse kg	Artikelnr.
16	50	40	30	44,8	-	-	9	M5	8	400 💠 4,5	35	40	-	M6	0,083	SF - 12016
25	78,5	63,5	50	65,6	79,8	82,3	12	M8	11	500 💠 6,5	55	65,5	30	M6	0,310	SF - 12025
32	92	77,5	50	74,2	90,5	90,5	12	M8	11	600 🕈 5,5	60	79,5	30	M6	0,340	SF - 12032
40	117	96	60	95,8	116,6	116	15	M10	14	700 🕈 8	70	96	37,5	M8	0,660	SF - 12040
50	136	115	60	113	133,7	136,2	15	M10	14	800 🌣 8	70	115	37,5	M8	0,700	SF - 12050

- ♦ Maximale Abmessungen zur Begrenzung der Durchbiegung des Zylinders unter Eigengewicht und für eine korrekte Befestigung.
- * Für Ø 16-40-50 mm haben MB und ML dieselben Werte

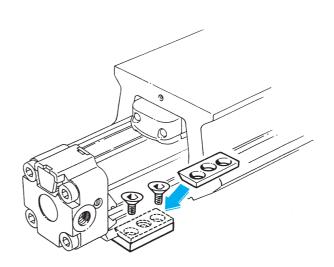
Befestigungsplatte für Serie S5


Befestigungsplatte für Serie VL1

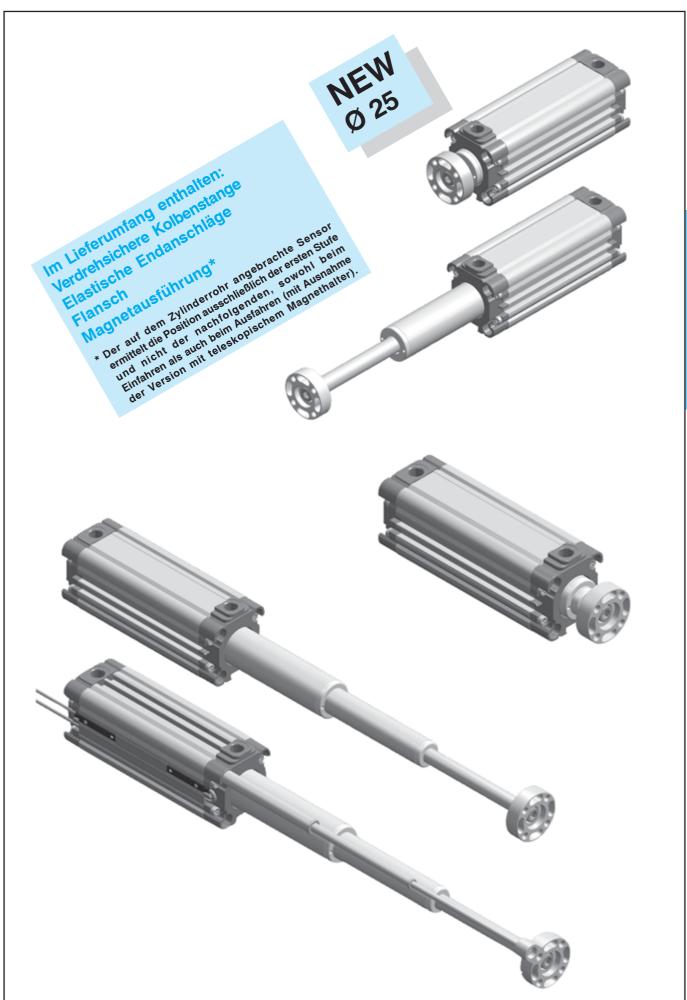
Beispiel zur Befestigung der Platten:


Befestigung mit im Lieferumfang enthaltenen Schrauben ohne Demontage der einzelnen Zylinderteile (gilt für alle Serien).

Befestigung oben



Zyl. Ø	
25 - 32	M6
40 - 50	M8


Befestigung unten

Zyl. Ø	
25 - 32	M8
40 - 50	M10

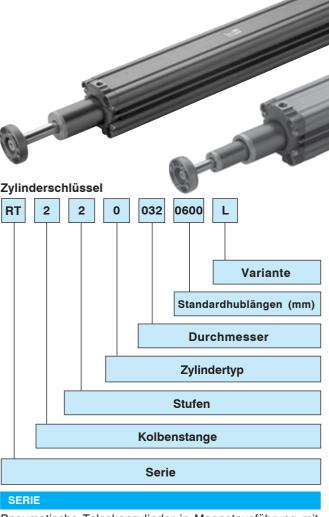
Aufgrund des hohen technologischen Gehalts stellt diese Zylinderserie zweifellos das Produkt mit dem höchsten Grad der Technik und der Entwicklung dar, das von den Technikern des Hauses entwickelt wurde.

Einer der wichtigsten Aspekte betrifft die Einbaumaße: im Vergleich zu einem traditionellen ISO-Zylinder mit gleichem Hub erreicht man eine Reduzierung um ca. 45% (mit einem dreistufigen Zylinder), was dem Kunden eine beträchtliche Einsparung für die Entwicklung und Fertigung der Ausrüstungen erlaubt. Der Zylinder ist in Magnetversion und mit Führungseinheiten lieferbar (nur für die zweistufige Version).

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20°C ÷ 80°C


Betriebsmedium: Druckluft mit oder ohne Schmierung. Zylinderrohr: aus Aluminium, innen und außen eloxiert Verdrehsichere Kolbenstange aus verchromtem Stahl: mit serienmäßig geliefertem Flansch ausgenommen für die Ausführungen mit Kolbenstange mit Außengewinde.

Elastische Endanschläge.

Magnetausführung mit Positionsermittlung, nur für die erste Stufe.

Auf Anfrage:

- Magnetsensor DF-... (Abschnitt Zubehör Seite 2).
- Band zum Abdecken der Drähte des Magnetsensoren. Typ. DHF-002100
- Magnetausführung für zwei- und dreistufige Zylinder ausgelegt nur für das Ablesen des Endhubs (ausgenommen Ø 25 mm)
- Führungseinheit nur für zweistufigen Teleskopzylinder (Seite 55-II)

Pneumatische Teleskopzylinder in Magnetausführung mit verdrehsicherer Kolbenstange, elastischen Endanschlägen und Flansch, Ø 032 \div 063 mm.

KOLBENSTANGE

- 2___ verchromter Stahl
- 1... nichtrostender Stahl

STUFEN

- 2... zweistufig
- 3... dreistufig

Zusammenfassende Tabelle der Durchmesserkombinationen

Teleskopic- zylinder	einstufig	zweistufig	dreistufig
25	25	16	-
32	32	20	-
40	40	25	16
50	50	32	20
63	63	40	25

ZYLINDERTYP

- 0 = doppelwirkend Bohrungsabstände ISO, Kolbenstange mit Innengewinde
- 3 = doppelwirkend, Bohrungsabstände ISO, Kolbenstange mit Außengewinde

DURCHMESSER

Zweistufig: Ø 025-032-040-050-063 mm

Dreistufig: Ø 040-050-063 mm

STANDARDHUBLÄNGEN

zweistufig

0100-0120-0160-0180-0200-0300-0400-0500-0600-0700 0800-0900-1000-1100-1200

Max. Hub: Ø 25 0300 mm

Ø 32 **0400 mm** Ø 40 **0600 mm**

Ø 50 **0900 mm**

Ø 63 1200 mm

dreistufig

0150-0180-0210-0240-0270-0300-0360-0450-0600-0750 0900-1050-1200-1500-1800

Max. Hub: Ø 40 1200 mm

Ø 50 **1500 mm**

Ø 63 **1800 mm**

VARIANTE

= ohne Flansch

L = frei drehende Kolbenstange

M = mit teleskopischem Magnethalter für 2°-3° Stufe.

Zweistufiger Teleskopzylinder Theoretische Kräfte ausgedrückt in N (0,102 kg)

Zweistufige Teleskop-		(mm²)	Betriebsdruck (bar)								
zylinder			2	4	6	8	10				
25	Schubkraft	201	41	82	123	164	205				
	Zugkraft	111	22	43	65	87	108				
32	Schubkraft	314	64	128	192	256	320				
	Zugkraft	201	41	82	123	164	205				
40	Schubkraft	490	100	200	300	400	500				
	Zugkraft	377	77	154	231	308	384				
50	Schubkraft	804	164	328	492	656	820				
	Zugkraft	603	123	246	369	492	615				
63	Schubkraft	1256	256	512	769	1025	1281				
00	Zugkraft	1055	215	430	646	861	1076				

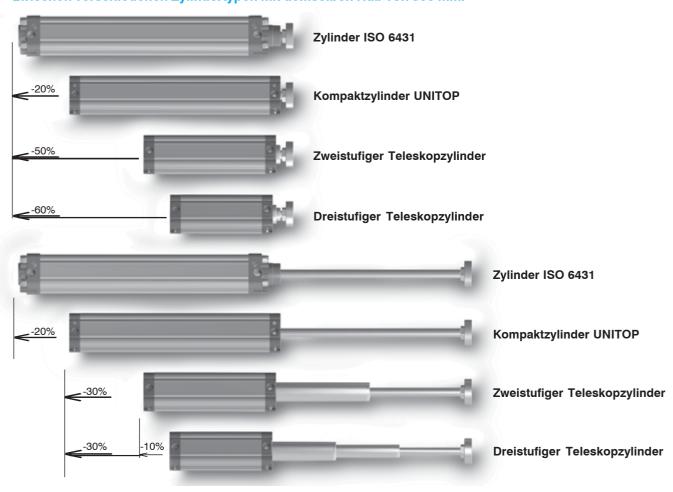
Dreistufiger Teleskopzylinder Theoretische Kräfte ausgedrückt in N (0,102 kg)

Dreistufiger Teleskop- zylinder	Nutzfläche	2	Betriek	sdruck	(bar) 8	10	
40	Schubkraft	201	41	82	123	164	205
40	Zugkraft	111	22	43	65	87	108
50	Schubkraft	314	64	128	192	256	320
30	Zugkraft	201	41	82	123	164	205
63	Schubkraft	490	100	200	300	400	500
33	Zugkraft	377	77	154	231	308	384

Maximaler Drehmoment [Nm] für verdrehsichere Kolbenstange

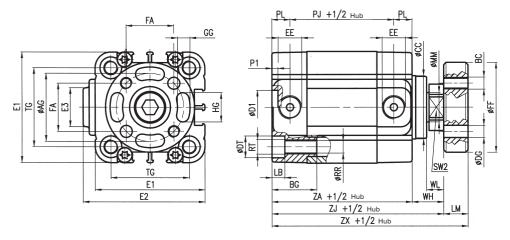
Zyl.	Moment						
Ø	2 stufiq	3 stufiq					
25	0,5	-					
32	0,8	-					
40	1	0,5					
50	2	0,8					
63	3	1					

Nenntoleranzen auf den Hub (mm)

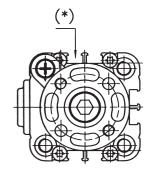

Zyl.	Toleranz								
Ø	2 stufiq	3 stufiq							
25	+ 2/0								
32									
40	+ 3,2/0	+ 4/0							
50									
63									

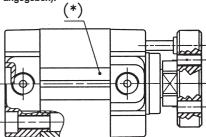
Der Teleskopzylinder arbeitet unter optimalen Bedingungen bei axialer Last, d.h. mit Zylinder in senkrechter Position, nach oben oder nach unten.

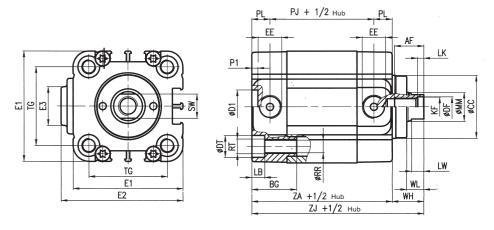
Er kann natürlich auch waagerecht und mit überhängender Last arbeiten; in diesem Fall muß jedoch folgendes beachtet werden:

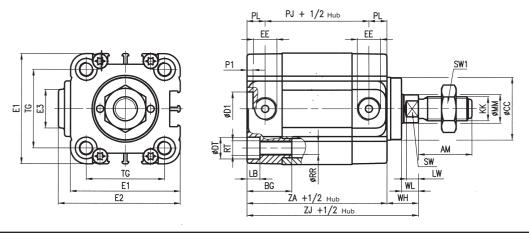

- die maximalen Hublängen müssen um 50 % reduziert werden im Vergleich zu den maximalen Nennhublängen.
- Zylinder mit Führungseinheiten anfordern.
- die Radialbelastung mit anderen Systemen abstützen (Wagen, Gleitschuhe, Gleitführungen)

Das nachstehende Beispiel veranschaulicht das Verhältnis der Einbaumaße zwischen verschiedenen Zylindertypen mit demselben Hub von 300 mm.




Zweistufiger Teleskopzylinder mit Flansch RT220...


Zweistufiger Teleskopzylinder Magnetausführung RT220....M


(*) Achtung: die Magnetsensoren der Serie DF... dürfen nur in der Nähe des teleskopischen Magnethalterstängchens angebracht werden (wie in Zeichnung angegeben).

Zweistufiger Teleskopzylinder ohne Flansch RT 220....l

Zweistufiger Teleskopzylinder mit Kolbenstange mit Außengewinde RT223...

Zyl. Ø	AF	Ø AG	АМ	вс	ВG	ø cc	ØD1 H11	Ø DF	Ø DG	Ø DT	E1	E2	E3	EE	FA	Ø FF	GG	HG	KF
25	10	22	22	M5	16	22	2	6,1	5	8	37	39	18	M5	15,6	30	5	9	M6
32	12	28	22	M5	18	26	14	8,2	5	9	46	50,5	16	G1/8	19,8	37	5,2	11	M8
40	12	33	22	M5	18	32	14	8,2	5	9	56	60,5	16	G1/8	23,3	42	5,2	15	M8
50	16	42	24	M6	24	40	18	10,2	6	11	66	70,5	16	G1/8	29,7	52	6,2	19	M10
63	16	50	24	M6	24	48	18	10,2	6	11	79	83,5	38	G1/8	35,4	64	6,2	25	M10

Zyl. Ø	кк	LB	LK	LM	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	SW2	TG	WH	WL	ZA	ZJ	zx
25	M10X1,25	4,5	1	8	4,5	10	2	32	8	4,2	M5	8	17	-	26	17	7	48	65	73
32	M10X1,25	5,3	2	10	5	12	2,5	43	7,5	5,2	M6	10	17	17	32,5	13	7	58	71	81
40	M10X1,25	5,3	2	10	5	12	2,5	45	7,5	5,2	M6	10	17	19	38	12	7	60	72	82
50	M12X1,25	6,5	2	12	6	16	2,5	46	7,5	6,6	M8	13	19	24	46,5	15	8	61	76	88
63	M12X1,25	6,5	2	12	6	16	2,5	50	7,5	6,6	M8	13	19	24	56,5	15	8	65	80	92

Masse

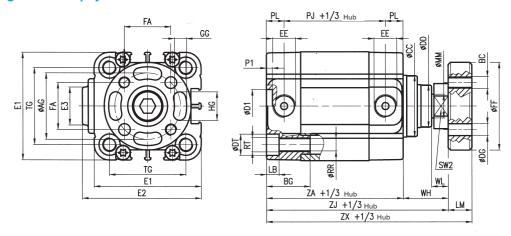
RT220...

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
25	200	2,45	74,2	1,2
32	270	3,02	124,6	1,4
40	419	3,77	182	1,6
50	640	5,28	314	2,6
63	1005	6,33	480	2,72

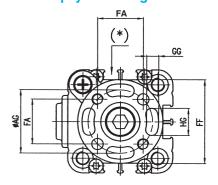
RT220...M

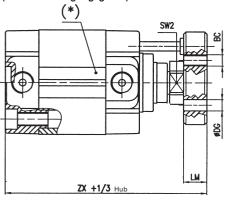
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	245	3,02	137,6	1,5
40	380	3,77	188,5	1,7
50	572	5,28	318	2,7
63	910	6,33	487	2,8

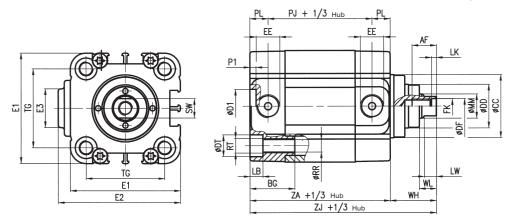
RT220...I

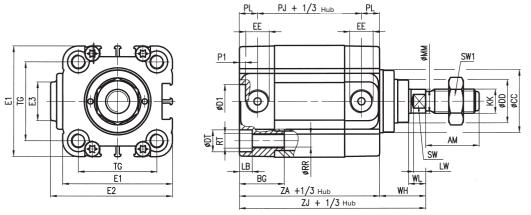

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
25	238	2,45	67,2	1,2
32	245	3,02	99,6	1,4
40	380	3,77	142,5	1,6
50	572	5,28	246	2,6
63	910	6,33	385	2,72

RT223...


Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
25	270	2,45	79,2	1,2
32	275	3,02	129,6	1,4
40	410	3,77	172,5	1,6
50	617	5,28	291	2,6
63	955	6,33	430	2,72


Dreistufiger Teleskopzylinder mit Flansch RT230...


Dreistufiger Teleskopzylinder Magnetausführung RT230....M


(*) Achtung: die Magnetsensoren der Serie DF... dürfen nur in der Nähe des teleskopischen Magnethalterstängchens angebracht werden (wie in Zeichnung angegeben).

Dreistufiger Teleskopzylinder ohne Flansch RT 230....I

Dreistufiger Teleskopzylinder mit Kolbenstange mit Außengewinde RT233....

Zyl. Ø	AF	Ø AG	АМ	вс	ВG	Ø CC	ØD1 H11	Ø DD	Ø DF	Ø DG	Ø DT	E1	E2	E3	EE	FA	Ø FF	GG	HG	KF
40	10	28	22	M5	18	32	14	22	6,2	5	9	56	60,5	16	G1/8	19,8	37	5,2	11	M6
50	12	28	22	M5	24	40	18	26	8,2	5	11	66	70,5	16	G1/8	19,8	37	5,2	11	M8
63	12	33	22	M5	24	48	18	32	8,2	5	11	79	83,5	38	G1/8	23,3	42	5,2	15	M8

Zyl. Ø	KK	LB	LK	LM	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	SW2	TG	WH	WL	ZA	ZJ	ZX
40	M10X1,25	5,3	2	10	5	10	2,5	45	7,5	5,2	M6	8	17	17	38	22	7	60	82	92
50	M10X1,25	6,5	2	10	5	12	2,5	46	7,5	6,6	M8	10	17	17	46,5	24	7	61	85	95
63	M10X1,25	6,5	2	10	5	12	2,5	50	7,5	6,6	M8	10	17	19	56,5	25	7	65	90	100

Maßliche Abweichungen der Serie RT230....M

				FA						
40	33	M5	5	23,3	42	5,2	15	10	19	92
50	42	M6	6	29,7	52	6,2	19	12	24	97
63	50	M6	6	35,4	64	6,2	25	12	24	102

Masse

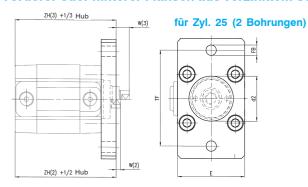
RT230...

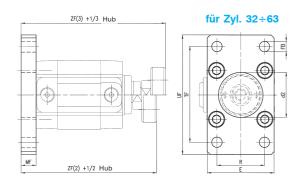
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
40	399	3,9	162	1,75
50	591	5,07	265	2,37
63	939	6,34	417	2,75

RT230...M

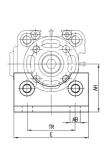
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
40	374	3,9	191	2
50	553	5,07	306,5	2,62
63	871	6.34	459	3

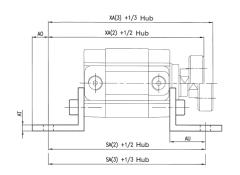
RT230...I


Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)		
40	374	3,9	137	1,75		
50	552	5,07	225,5	2,37		
63	871	6,34	349	2,75		


RT233...

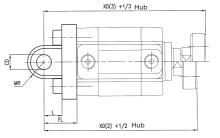
	Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
Ī	40	405	3,9	168	1,75
	50	583	5,07	256,5	2,37
	63	902	6,34	380	2,75

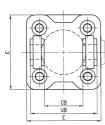

Vorderer oder hinterer Flansch aus verzinktem Stahl



	yl. Ø	Ød2 H11	E	Ø FB H13	W(2)	W(3)	MF	R JS14	TF JS14	UF	ZF(2)	ZF(3)	ZH(2)	ZH(3)	Masse Kg	Artikelnr.
2	5	24	40	6,6	7	-	10	-	60	76	83	-	58	-	0,18	RTF-12025
3	2	30	45	7	3	-	10	32	64	80	91	-	68	-	0,20	KF-12032
4	0	35	52	9	2	12	10	36	72	90	92	102	70	70	0,25	KF-12040
5	0	44	65	9	3	12	12	45	90	110	100	109	73	73	0,50	RTF-12050
6	3	52	75	9	3	13	12	50	100	120	104	114	77	77	0,65	RTF-12063

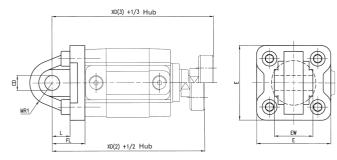
Winkelfußbefestigungen aus verzinktem Stahl





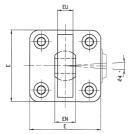
Zyl. Ø	ØAB H13	AH JS15	AO max	ΑТ	AU ±0,2	E max	SA(2)	SA(3)	TR	XA(2)	XA(3)	Masse Kg	Artikelnr.
25	6,6	30	6	4	16	40	80	-	26	89	-	0,04	RTF-13025
32	7	32	11	4	24	50	106	-	32	105	-	0,07	KF-13032
40	9	36	15	4	28	58	116	116	36	110	120	0,09	KF-13040
50	9	45	15	5	32	70	125	125	45	120	129	0,20	RTF-13050
63	9	50	15	5	32	85	129	129	50	124	134	0,20	RTF-13063

Hinterer Gelenklagerbock aus Aluminiumdruckguß mit Bolzen aus verzinktem Stahl



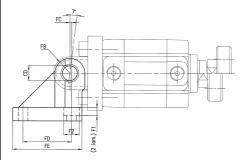
Zyl. Ø	CB H14	ØCD H9	E	FL	L	MR	UB h14	XD(2)	XD(3)	Masse Kg	Artikelnr.
32	26	10	48	22	12	11	45	103	-	0,06	KF-10032A
40	28	12	54	25	15	13	52	107	117	0,08	KF-10040A
50	32	12	65	27	15	13	60	115	124	0,15	KF-10050A
63	40	16	75	32	20	17	70	124	134	0,25	KF-10063A

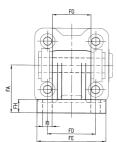

Hinteres Gelenklager aus Aluminiumdruckguß



Für Zylinder Ø 25; es ist möglich, den Gelenklagerbock zusammen mit MF-21025 der Serie Mikrozylinder ISO 6432 zu verwenden.

2	Zyl. Ø	ØCD H9	E	EW toll. ±0,2	FL	L	MR1	XD(2)	XD(3)	Masse Kg	Artikelnr.
	25	8	38	16	20	14	8	93	-	0,027	RPF-11025
	32	10	48	26	22	12	15	103	-	0,08	KF-11032
	40	12	54	28	25	15	18	107	117	0,10	KF-11040
	50	12	65	32	27	15	20	115	124	0,17	KF-11050
	63	16	75	40	32	20	23	124	134	0,25	KF-11063

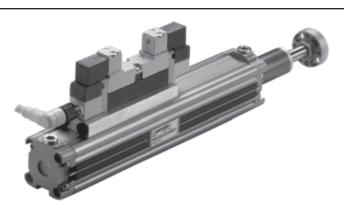

Hinteres Drehgelenklager aus Aluminiumdruckguß

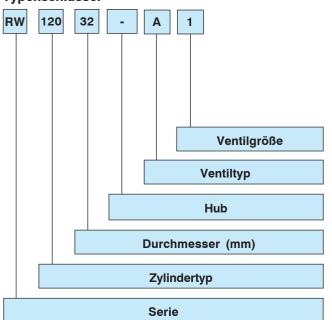


	Zyl. Ø	ØCN H9	Е	EN	ER	EU	FL	L	XD(2)	XD(3)	Masse kg	Artikelnr.
	32	10	48	14	15	10,5	22	14	103	-	0,10	KF-11032S
	40	12	54	16	18	12	25	16,5	107	117	0,20	KF-11040S
Ī	50	12	65	16	20	12	27	17,5	115	124	0,30	KF-11050S
_	63	16	75	21	23	15	32	21,5	124	134	0,35	KF-11063S

Gegengelenk 90° aus Aluminiumdruckguß

Befestigungsschrauben Seite 51-l (für Zyl. Ø 25 Seite 32 - I)


	Zyl. Ø	ØCD H9	FA Js15	FB	FC	FD	FE	FG ±0,2	FH	Ø FI	F1	Ø F2	Masse kg	Artikelnr.
ĺ	32	10	32	10	1,2	32,5	46,5	26	9	6,4	5,5	10,5	0,10	KF-19032
	40	12	36	12	2,6	38	51,5	28	9	6,4	5,5	10,5	0,20	KF-19040
ĺ	50	12	45	12	0,3	46,5	63,5	32	9	8,4	5	13,5	0,30	KF-19050
	63	16	50	16	3,3	56,5	73,5	40	10,5	8,4	5	13,5	0,35	KF-19063


Zylinder mit denselben technischen Merkmalen wie die der Serie RT, in der ein Elektroventil 5/2-5/3 der Serie VDMA Seite 18 oder 26 mm integriert wurde. Speisung und Entlüftung erfolgen direkt von der Verbindungsplatte zwischen Ventil und Zylinder aus, wobei die Entlüftungen reguliert werden können. Diese neuen Zylindertypen RW ermöglichen es, mit einer einzigen Lösung die gewünschte Anwendung zu realisieren. Die elektrische Verbindung M12 kann auch von einem PLC aus gesteuert werden.

TECHNISCHE MERKMALE

Für die technischen und funktionellen Eigenschaften der Zylinder und Ventile siehe die entsprechenden Serien auf Seite 26-II (Abschnitt High-Tech) und auf Seite 72-III (Abschnitt Ventile)

Typenschlüssel

SERIE

RW= Teleskopzylinder Magnetausführung nur einstufig mit integriertem Ventil.

ZYLINDERTYP

Serie RW

120 zweistufig Kolbenstange aus rostfreiem Stahl

130 dreistufig Kolbenstange aus rostfreiem Stahl

220 zweistufig Kolbenstange verchromt

230 dreistufig Kolbenstange verchromt

DURCHMESSER

32 - 40 - 50 - 63 mm

STANDARDHUBLÄNGEN

Mindesthub zweistufig 300 mm Mindesthub dreistufig 360 mm

VENTILTYP

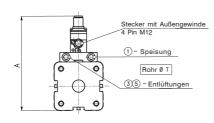
A = VDMA Ventil 24Vdc Stecker M12 5/2 monostabil elektrisch/pneumatische Feder

B = VDMA Ventil 24Vdc Stecker M12

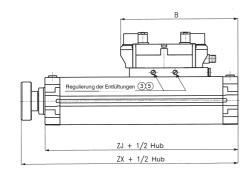
5/2 bistabil elektrisch/elektrisch C = VDMA Ventil 24Vdc Stecker M12

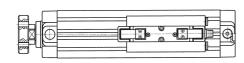
5/3 geschlossene Mittelstellung elektrisch/elektrisch

D = VDMA Ventil 24Vdc Stecker M12 5/3 offene Mittelstellung, elektrisch/elektris

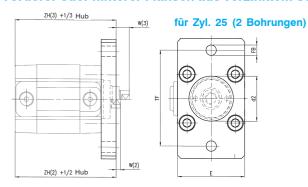

5/3 offene Mittelstellung, elektrisch/elektrisch E = VDMA Ventil 24Vdc Stecker M12

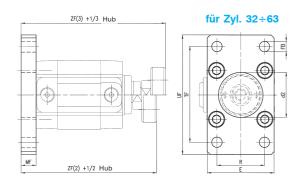
E = VDMA Ventil 24Vdc Stecker M12 5/3 Mittelstellung unter Druck elektrisch/elektrisch

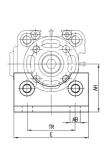

VENTILGRÖßE

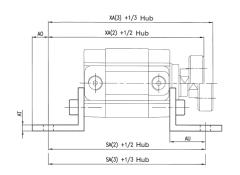

- 1 = VDMA 18 mm für ø 32-40-50 mm
- 2 = VDMA 26 mm für Ø 63 mm

Einbaumaße


	Żyl.				Mindesthub Teleskopzylinder							
	Ø	Α	В	Т	2 stufig	ZJ	ZX	3 stufig	ZJ	ZX		
3	32	107,5	169	6	225	269	289	-	-	-		
4	10	117,5	169	6	220	264	283	330	374	403		
5	50	127,5	169	6	220	264	287	330	374	405		
e	33	153	184	8	240	288,5	311,5	360	408,5	440,5		

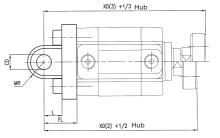


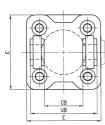

Vorderer oder hinterer Flansch aus verzinktem Stahl



	yl. Ø	Ød2 H11	E	Ø FB H13	W(2)	W(3)	MF	R JS14	TF JS14	UF	ZF(2)	ZF(3)	ZH(2)	ZH(3)	Masse Kg	Artikelnr.
2	5	24	40	6,6	7	-	10	-	60	76	83	-	58	-	0,18	RTF-12025
3	2	30	45	7	3	-	10	32	64	80	91	-	68	-	0,20	KF-12032
4	0	35	52	9	2	12	10	36	72	90	92	102	70	70	0,25	KF-12040
5	0	44	65	9	3	12	12	45	90	110	100	109	73	73	0,50	RTF-12050
6	3	52	75	9	3	13	12	50	100	120	104	114	77	77	0,65	RTF-12063

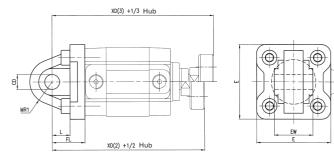
Winkelfußbefestigungen aus verzinktem Stahl



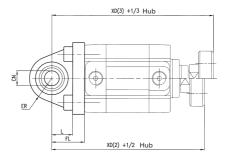


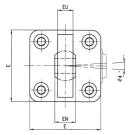
Zyl. Ø	ØAB H13	AH JS15	AO max	ΑТ	AU ±0,2	E max	SA(2)	SA(3)	TR	XA(2)	XA(3)	Masse Kg	Artikelnr.
25	6,6	30	6	4	16	40	80	-	26	89	-	0,04	RTF-13025
32	7	32	11	4	24	50	106	-	32	105	-	0,07	KF-13032
40	9	36	15	4	28	58	116	116	36	110	120	0,09	KF-13040
50	9	45	15	5	32	70	125	125	45	120	129	0,20	RTF-13050
63	9	50	15	5	32	85	129	129	50	124	134	0,20	RTF-13063

Hinterer Gelenklagerbock aus Aluminiumdruckguß mit Bolzen aus verzinktem Stahl



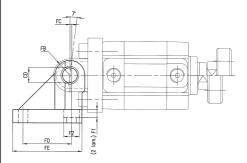
Zyl. Ø	CB H14	ØCD H9	E	FL	L	MR	UB h14	XD(2)	XD(3)	Masse Kg	Artikelnr.
32	26	10	48	22	12	11	45	103	-	0,06	KF-10032A
40	28	12	54	25	15	13	52	107	117	0,08	KF-10040A
50	32	12	65	27	15	13	60	115	124	0,15	KF-10050A
63	40	16	75	32	20	17	70	124	134	0,25	KF-10063A

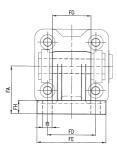

Hinteres Gelenklager aus Aluminiumdruckguß



Für Zylinder Ø 25; es ist möglich, den Gelenklagerbock zusammen mit MF-21025 der Serie Mikrozylinder ISO 6432 zu verwenden.

2	Zyl. Ø	ØCD H9	E	EW toll. ±0,2	FL	L	MR1	XD(2)	XD(3)	Masse Kg	Artikelnr.
	25	8	38	16	20	14	8	93	-	0,027	RPF-11025
	32	10	48	26	22	12	15	103	-	0,08	KF-11032
	40	12	54	28	25	15	18	107	117	0,10	KF-11040
	50	12	65	32	27	15	20	115	124	0,17	KF-11050
	63	16	75	40	32	20	23	124	134	0,25	KF-11063


Hinteres Drehgelenklager aus Aluminiumdruckguß



Zyl. Ø	ØCN H9	E	EN	ER	EU	FL	L	XD(2)	XD(3)	Masse kg	Artikelnr.
32	10	48	14	15	10,5	22	14	103	-	0,10	KF-11032S
40	12	54	16	18	12	25	16,5	107	117	0,20	KF-11040S
50	12	65	16	20	12	27	17,5	115	124	0,30	KF-11050S
63	16	75	21	23	15	32	21,5	124	134	0,35	KF-11063S

Gegengelenk 90° aus Aluminiumdruckguß

Befestigungsschrauben Seite 51-l (für Zyl. Ø 25 Seite 32 - I)

	Zyl. Ø	ØCD H9	FA Js15	FB	FC	FD	FE	FG ±0,2	FH	Ø FI	F1	Ø F2	Masse kg	Artikelnr.
ĺ	32	10	32	10	1,2	32,5	46,5	26	9	6,4	5,5	10,5	0,10	KF-19032
	40	12	36	12	2,6	38	51,5	28	9	6,4	5,5	10,5	0,20	KF-19040
ĺ	50	12	45	12	0,3	46,5	63,5	32	9	8,4	5	13,5	0,30	KF-19050
	63	16	50	16	3,3	56,5	73,5	40	10,5	8,4	5	13,5	0,35	KF-19063

Führungseinheiten für Druckluftzylinder geeignet für:												
Zylinder ISO 6431 - 6432 Serie M Ø 16 ÷ 25 Serie K/KD Ø 32 ÷ 100	Kolbenstan- genlose Zylinder Serie S1 Ø 25 ÷ 50	Kurzhub- zylinder Serie W Ø 25 ÷ 100	Kompakt- zylinder STRONG Serie RS Ø 32 ÷ 63	Teleskop- zylinder zweistufig Serie RT2 Ø 32 ÷ 63								

KONSTRUKTIONSMERKMALE

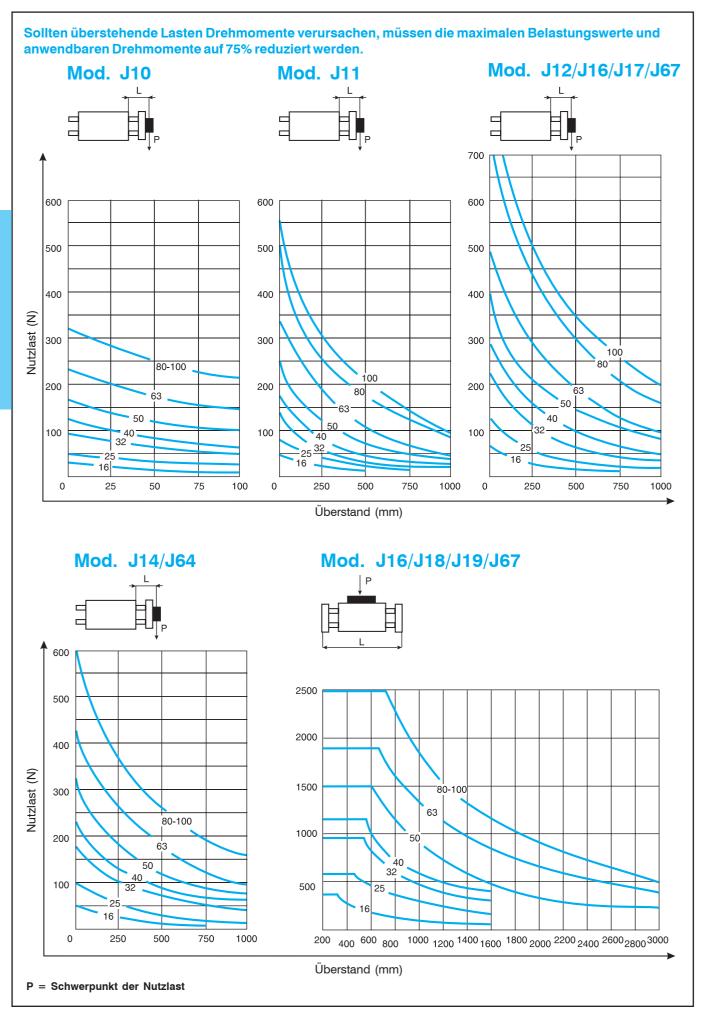
Außenprofil Führungsstangen aus Strangpreßaluminium

Robustheit und Zuverlässigkeit dank groß dimensionierter, hohler, verchromter Führungsstangen

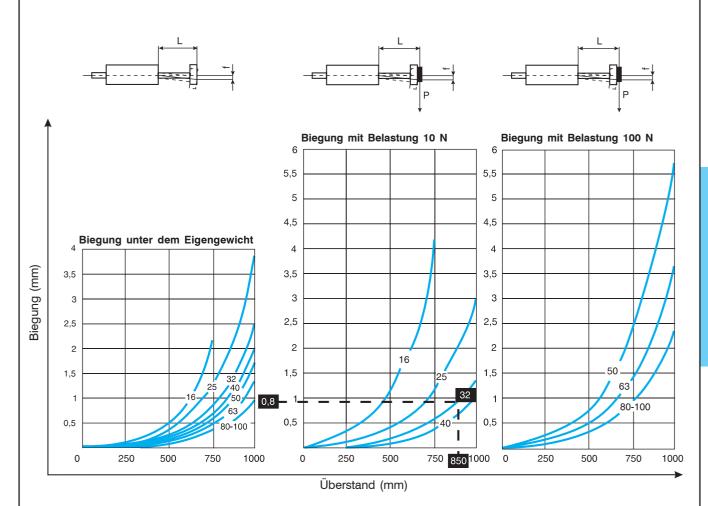
Wirtschaftlicher Betrieb aufgrund verschleißfester Materialien, dadurch hohe Lebensdauer (7000 - 10000 km)

Widerstandsfähigkeit und geräuscharmer Betrieb durch selbstschmierende Führungsbüchsen aus speziellem Stahl

Standardisierte Ausführungen, aber auch kundenbezogene Modelle auf Anfrage


Bewährte hohe Widerstandsfähigkeit bei Spitzenbelastungen

Sicherheitsabstand von 25 mm zur Vorbeugung von Unfällen für alle Modelle nach EN 349


	TECHNISCHE DATEN												
Betriebsdruck:													
2 ÷ 10 bar	3 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar									
		Umgebungstemperatur											
	- 20°C ÷ 80°C												
		GRÖßEN		I									
16 ÷ 100	40 ÷ 80	25 ÷ 100	32 ÷ 63	32 ÷ 63									
	STAN	DARDHUBLÄNGEN	(mm)										
25 ÷ 1000	hie												
Min. und max. Hublängen, siehe entsprechende Typenschlüssel													

Mod. J10/J11/J12/J14/J16/J17/J64

Anwendungsbeispiele:

Beispiel zur Errechnung der Biegung

Die Gesamtbiegung der Führungseinheit wird durch die Biegung unter dem Eigengewicht plus der Biegung durch die Belastung errechnet.

Für Belastungen, die von 10 N oder 100 N (Werte der Kurve) abweichen, erhält man die Biegung, indem man den Kurvenwert K mit nachstehendem Verhältnis multipliziert:

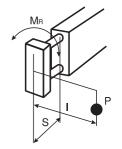
$$f = K \cdot \frac{Q \text{ (Belastung)}}{10 \text{ N o } 100 \text{ N}}$$

Beispiel: Führungseinheit Größe 32, Länge 850 mm, und angewandte Last Q 25 N. Auf der Kurve, die der Biegung mit Belastung von 10 N entspricht, erhält man den Koeffizient 0,3 (wie im Diagramm angegeben), danach ist

$$f = 0.8 \cdot \frac{25}{10} = 2 \text{ mm}$$

Zum so erhaltenen Wert ist der entsprechende Wert der Biegung der Führungseinheit unter dem Eigengewicht zu addieren.

Beispiel


Führungseinheit Ø 63 J11

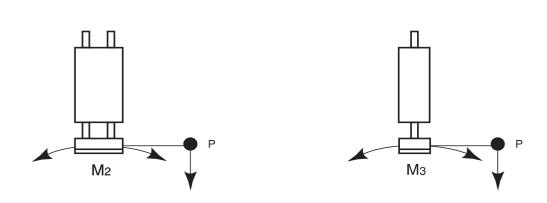
S = 500 mm (Überstand der Belastung)

Maximale angewandte Belastung = 100 · 0,75 = 75 N

Maximales angewandtes Drehmoment = $61.7 \cdot 0.75 = 46.3 \text{ Nm}$

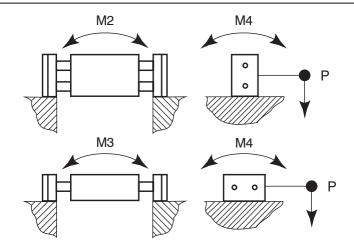
Maximale Widerstandsmomente MR

Größe	MR	
16	4.7	Nm
25	10.2	Nm
32	19.9	Nm
40	26.9	Nm
50	42.8	Nm
63	61.7	Nm
80	93	Nm
100	101.6	Nm

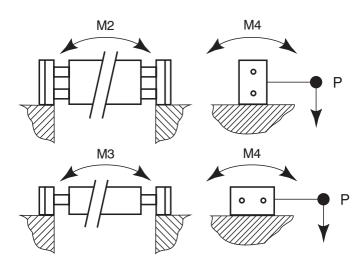

Errechnung des Drehmoments

Für die Errechnung des Drehmoments M1 muß die angewandte Belastung P(N) mit der Länge I (mm) multipliziert werden.

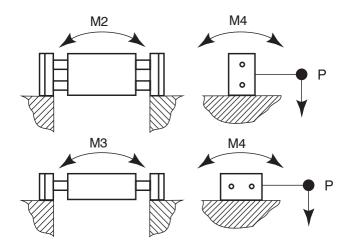
$$M1 = P \cdot I$$


Der so erhaltene Wert muß niedriger sein als die maximalen MR Werte, die in der Tabelle angegeben sind: sollte der erhaltene Wert über diesem Wert liegen, muß auf die nächstgrößere Führungseinheit übergegangen werden.

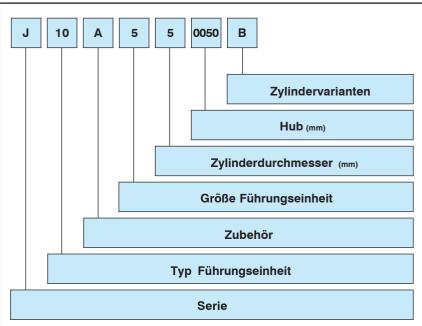
Führungseinheit für...


		Zylinder I	SO 6431 - 6432	2		Kurzhubzylinder					
Größe Führungsei- nheit	J10 M2=M3 (Nm)	J11 M2=M3 (Nm)	J12=J12B M2=M3 (Nm)	J14=J14B J64=J64B M2=M3 (Nm)	J16=J16B M2=M3 (Nm)	J51 M2=M3 (Nm)	J52 M2=M3 (Nm)	J53 M2=M3 (Nm)	J54 M2=M3 (Nm)		
16	3,2	6,4	11	7,4	11	-	-	-	-		
25	6	13,2	23,6	17,8	23,6	6	8,2	6	8,2		
32	12,2	27,2	49	37,4	49	12,2	15	12,2	15		
40	17,8	36,8	73,6	51	73,6	17,8	19,8	17,8	19,8		
50	24,8	56	107,8	78	107,8	24,8	29,8	24,8	29,8		
63	35,2	85,6	156,8	114	156,8	35,2	42,8	35,2	42,8		
80	52	136	248	173,2	248	52	64,4	52	64,4		
100	52	160	298	173,2	298	52	64,4	52	64,4		

Führungseinheit für...


	Zy	linder ISO 6431- 64	132	Kurzhubzylinder	
Größe Führun- gseinh- eit	J16=J16B M2/M3 (Nm)	J18 M2/M3 (Nm)	J19 M2/M3 (Nm)	J56 M2/M3 (Nm)	M4 (Nm)
16	12,8/8,8	10,4/4,4	12,8/8,8	-	9,4
25	28/19	22,2/8,6	28/19	22/7,6	20,4
32	55,6/38,8	45,2/17	55,6/38,8	42,6/15	39,8
40	80/59,4	58,5/22,6	80/59,4	57,4/19,8	53,8
50	121/75,2	92/33,4	121/75,2	90,4/29,8	85,6
63	173,6/122,6	135,2/52	173,6/122,6	130/42,4	123,4
80	270,2/196	204,2/84	270,2/196	196,6/64,4	186
100	318,6/245,6	230,8/109,2	318,6/245,6	213,2/64,4	203,2

Führungseinheit für Druckluftzylinder ISO 6431 - 6432


Größe Führun- gseinh-		J		7B=J M2 (N	67=J6 m)	7B			J1	7=J17 N	7B=J6 13 (Nm		В		M4 (Nm)
eit								Hub (n	n/m)						
	100	200	300	400	500	750	1000	100	200	300	400	500	750	1000	
16	30,4	48,4	58	84,8	103	148,8	194,8	29	47,4	70	84.2	102,6	148,6	194,6	9,4
25	56,8	114	114	143,2	172,4	246	320	53	82,6	112	141,8	171,4	245,4	320	20,4
32	89,4	133	178	222	270	386	502	80	126,8	173,6	220	267,2	384	500	39,8
40	117	169,2	223,6	279	334,4	474,8	616	104	160,6	217,4	274	330	472	614	53,8
50	161,4	230	301,4	373,2	446	630	816	138	212,8	287,2	361,6	436	622	808	85,6
63	228	312	402	493	586	818	1102	192,8	288	383	478	573	810	1048	123,4
80	328,6	434	550,4	668	788,8	1091,2	1398	270	394	518	642	766	1076	1386	186
100	349,6	456	570	687	806	1108,6	1414	284	408	532	656	780	1090	1400	203,2

Führungseinheit für kolbenstangenlose Zylinder

Größe	Zylinder- durchmesser	Standardso	chlitten J30	Langer Sc	hlitten J31	M4 (Nm)
eit	mm	M2 (Nm)	M3 (Nm)	M2 (Nm)	M3 (Nm)	M4 (Nm)
40	25	68,4	42,4	110,2	96,2	53,8
50	32	118,4	81,8	198	178,6	85,6
63	40	192,2	147,2	315	289,8	123,4
80	50	298,2	233,2	516	481,2	186

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Unfallverhütung nach EN 349 gebaut.

Zur Errechnung des Gesamtgewichts muß zum Gewicht von Führungseinheit und Hub "0" des Zylinders die Gewichtszunahme pro mm Führungsstange von Zylinder und Führungseinheit sowie Hub addiert werden.

Beispiel: zur Ermittlung des Gewichts einer Führungseinheit J11 Größe 32 und Hub 100 mm wie folgt vorgehen:

	Masse (kg)
Führungseinheit bei Hub "0"	1,3
Zylinder bei Hub "0"	0,504
Führungsstange 1,17 x 100	0,117
Gewicht des Zylinders 2,35 x 100	0,235
Gesamtgewicht	2,156

SERIE

J = Führungseinheiten

TYP DER FÜHRUNGSEINHEIT

- 10 = Führungseinheit, überstehende Führungsstangen mit kurzem Führungsschlitten (1 Führungsbüchse empfohlen bis 50 mm)
- 11 = Führungseinheit, überstehende Führungsstangen mit mittellangem Schlitten (2 Führungsbüchsen)
- 12 = Führungseinheit, überstehende Führungsstangen mit langem Schlitten (2 Führungsbüchsen)
- **14** = Führungseinheit, geschützter Zylinder (2 Führungsbüchsen)
- 16 = Führungseinheit, Mittenbefestigung(2 Führungsbüchsen halbintegrierterZylinder)
- 17 = Führungseinheit, Mittenbefestigung (2 Führungsbüchsen - geschützter Zylinder)
- 18 = Führungseinheit, mittellanger beweglicher Schlitten (2 Führungsbüchsen - Zylinder außen angebaut)
- 19 = Führungseinheit, langer beweglicher Schlitten (2 Führungsbüchsen - Zylinder außen angebaut)

ZUBEHÖR

A = Abstreifer an den Führungsstangen

GRÖßE der FÜHRUNGSEINHEIT

- **0** = 16 nur für Zylinder Ø 16
- 2 = 25 nur für Zylinder Ø 25
- 3 = 32 nur für Zylinder Ø 32
- $4 = 40 \text{ nur für Zylinder } \emptyset 40$
- **5** = 50 nur für Zylinder Ø 50 **6** = 63 nur für Zylinder Ø 63
- **6** = 63 nur für Zylinder Ø 63 **7** = 80 nur für Zylinder Ø 80
- $8 = 100 \text{ nur für Zylinder } \emptyset 100$

ZYLINDERDURCHMESSER

0	=	16	5	=	50
2	=	25	6	=	63
3	=	32	7	=	80
4	=	40	8	=	100

HUB

Standardhublängen mm:

Serie M - Mikrozylinder

25 - 30 - 40 - 50 - 75 -100 - 125 - 150 - 160 - 175 200 - 250 - 300 - 400 - 500.

Serie K/KD - Zylinder ISO

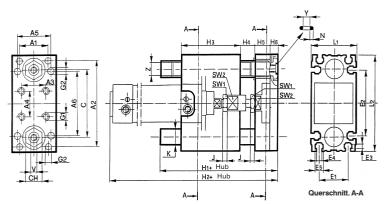
25 - 50 - 75 - 80 - 100 - 125 - 150 - 160 - 175 200 - 250 - 300 - 320 - 400 - 450 - 500.

ZYLINDERVARIANTEN

- A = Mikrozylinder Serie M150, Ø16÷25 mm ISO Zylinder Serie K200, Ø32÷ 100 mm
- B = Mikrozylinder mit Feststelleinheit Serie M 250, Ø 16÷25 ISO Zylinder mit Feststelleinheit Serie K 200, Ø 32÷100

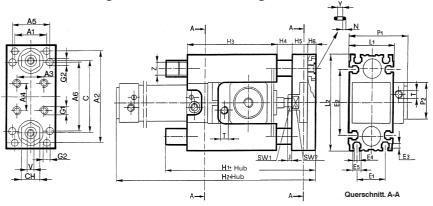
Für Zylinder Serie KD

- E = ISO Zylinder Ø 32÷ 100 Serie KD 200 für folgende Typen: J10-J11-J12-J16-J18-J19
- F = ISO Zylinder Ø 32 ÷ 100 Serie KD 200 mit Feststelleinheit nur Typ J12


ANMERKUNG: Führungseinheiten haben serienmäßig einen Zylinder mit Dämpfung; Magnetausführung ist für die Modelle J10 J11/J12/J18/J19 vorgesehen; für alle anderen Serien ist für die Magnetausführung der Zusatz eines magnetischen Schalterkanals der Serie DKJ... vorgesehen, der separat bestellt werden muß (siehe Abschnitt Zubehör Seite 6).

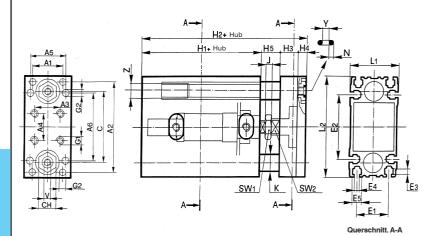
J10 kurzer Schlitten, 1 Führungsbüchse (empfohlen bis zu einem Hub von 50 mm)

J11 mittellanger Schlitten, 2 Führungsbüchsen

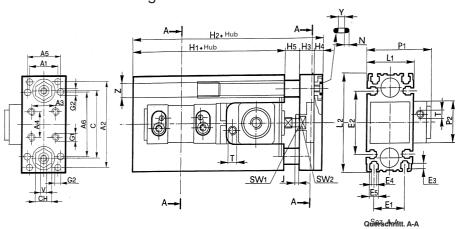

J12 langer Schlitten, 2 Führungsbüchsen

Gre	öße				J.	10						J.	11						J	12			
Füh	run- inh-	Zyl. Ø	+ H	UB	НЗ	H4	H5	H6	Masse (kg)	+ F	IUB	НЗ	H4	H5	Н6	Masse (kg)	+ 1	IUB	НЗ	H4	H5	Н6	Masse (kg)
-	eit		H1	H2					Hub "0"	H1	H2					Hub "0"	H1	H2					Hub "0"
1	6	16	124	141	32	25	18	8	0,428	147	168	55	25	18	8	0,52	172	193	80	25	18	8	0,585
2	25	25	130	164	38	25	18	8	0,62	157	192	65	25	18	8	0,75	192	227	100	25	18	8	0,9
3	32	32	141	168	43	25	20	10	1,06	176	203	78	25	20	10	1,3	223	250	125	25	20	10	1,602
4	10	40	149	184	51	25	20	10	1,5	183	218,5	85	25	20	10	1,84	248	283,5	150	25	20	10	2,33
5	50	50	165	196	57	25	25	10	2,46	203	234,5	95	25	25	10	3,01	273	304,5	165	25	25	10	3,775
E	3*	63	171,5	213	62,5	25	25	12	3,61	219,5	260,5	110	25	25	12	4,89	294,5	329,5	185	25	25	12	6,48
	30*	80	198,5	242	78,5	25	30	12	5,4	249,5	293,5	130	25	30	12	6,68	339,5	383,5	220	25	30	12	8,27
10	00*	100	205,5	246	85	25	30	12	6,22	269,5	321	150	25	30	12	7,52	379,5	431	260	25	30	12	9,11

J12 B langer Schlitten, 2 Führungsbüchsen, mit Feststelleinheit

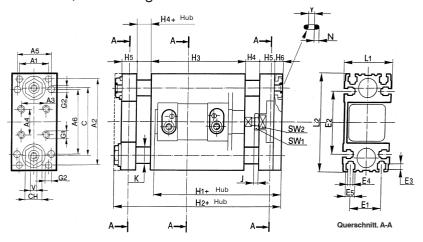


	Größe							J12	В				
	-ührun- gseinh-	Zyl. Ø	+ 1	IUB	НЗ	H4	H5	Н6	P1	P2	т	Masse Hub	(kg) "0"
	eit)	H1	H2	113	114	ПЭ	110	-	F2	•	Führungs- einheit	Feststell- einheit
	25	25	186	220	94	25	18	8	77,5	40	G 1/8	0,874	0,43
	32	32	220	247	122	25	20	10	83,5	50	G 1/8	1,592	0,73
Ī	40	40	229	265	131	25	20	10	91,5	58	G 1/8	2,18	0,9
	50	50	252	283	144	25	25	10	106,5	70	G 1/8	3,555	1,4
	63*	63	271,5	313,5	163	25	25	12	129	85	G 1/8	5,748	2,31
	80*	80	299,5	343	180	25	30	12	150	100	G 1/8	7,56	3,7
	100*	100	339,5	385	220	25	30	12	185,5	116	G 1/8	8,385	7,3

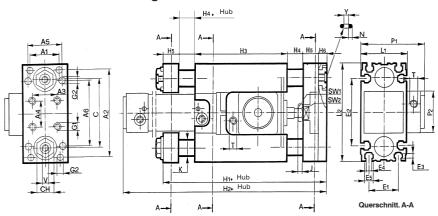

J14 2 Führungsbüchsen

Größe	-			J	114					
		+ F	IUB	НЗ	H4	H5	Masse (kg)			
Größe Führun- Zyl. gseinh- Ø eit		H1	H2	ПЗ	114	115	Hub "0"			
16	16	100 120	151	18	8	25	0,62			
25	25	120	171	18	8	25	0,947			
32	32	130	185	20	10	25	1,58			
40	40	140	195	20	10	25	2,17			
50	50	150	210	25	10	25	3,48			
63*	63	165	227	25	12	25	5,08			
80*	80	180	247	30	12	25	6,87			
100*	100	195	262	30	12	25	7,74			

J14 B 2 Führungsbüchsen mit Feststelleinheit

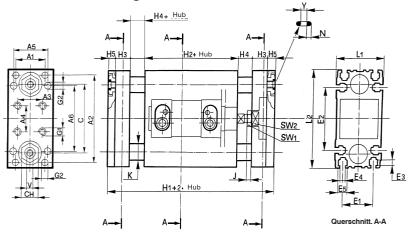


	Größe							J14	.B			
F	-ührun- gseinh-	•	+ F	IUB	НЗ	Н4	H5	P1	P2	т	Masse Hub	(kg) "0"
-	eit	Q	H1	H2	пэ	П4	пэ	FI	F2	'	Führungs- einheit	Feststell- einheit
	25	25	179	230	18	8	25	77,5	40	G 1/8	1,183	0,43
	32	32	209	264	20	10	25	83,5	50	G 1/8	2,055	0,73
	40	40	222	277	20	10	25	91,5	58	G 1/8	2,805	0,9
	50	50	236	296	25	10	25	106,5	70	G 1/8	3,526	1,4
	63*	63	250	312	25	12	25	129	85	G 1/8	6,71	2,31
	80*	80	285	352	30	12	25	150	100	G 1/8	8,5	3,7
	100*	100	335	402	30	12	25	185,5	116	G 1/8	9,32	7,3

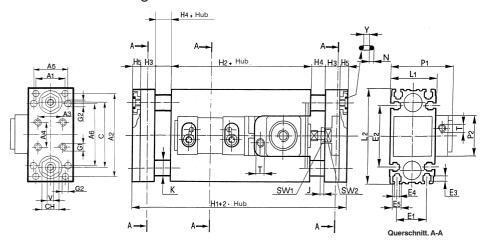

J16...., 2 Führungsbüchsen

Größe	7.4				J1	6		
Führung-	Zyl. Ø	+ F	IUB	НЗ	H4	H5	Н6	Masse (Kg)
seinheit	_	H1	H2	113	117	113	НЗ	Hub "0"
16	16	137	182	80	25	18	8	0,685
25	25	156	202	100	25	18	8	1,022
32	32	168	235	125	25	20	10	1,985
40	40	184	260	150	25	20	10	2,452
50	50	195	285	165	25	25	10	3,82
63*	63	213	309	185	25	25	12	6,77
80*	80	244	354	220	25	30	12	8,56
100*	100	256	394	260	25	30	12	9,39

J16 B, 2 Führungsbüchsen mit Feststelleinheit

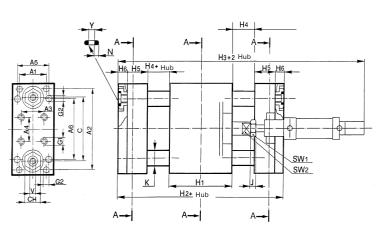


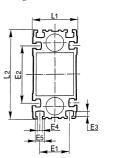
								J1	6B				
ı	Größe Führung-	Zyl. Ø	+	HUB	НЗ	H4	H5	Н6	P1	P2	т	Masse Hub	
	seinheit	•	H1	H2	пэ	П4	пэ	ПО	ī	F2	'	Führun- geinheit	
Ī	25	25	188	220	94	25	18	8	77,5	40	G 1/8	0,94	0,43
	32	32	222	247	122	25	20	10	83,5	50	G 1/8	1,965	0,73
I	40	40	231 265		131	25	20	10	91,5	58	G 1/8	2,3	0,9
	50	50	254	283	144	25	25	10	106,5	70	G 1/8	3,59	1,4
Ī	63*	63	275	313,5	163	25	25	12	129	85	G 1/8	6,4	2,31
	80*	80	302	343	180	25	30	12	150	100	G 1/8	8,19	3,7
ĺ	100*	100	342	385	220	25	30	12	185,5	116	G 1/8	9,02	7,3



Größe	7		J.	17	•		
Führung-	Zyl. Ø	+ 2 • HUB	+ HUB	НЗ	H4	H5	Masse (Kg)
seinheit		H1	H2	113	114	113	Hub "0"
16	16	202	100	18	25	8	0,715
25	25	222	120	18	25	8	1,243
32	32	240	130	20	25	10	1,925
40	40	250	140	20	25	10	2,234
50	50	270	150	25	25	10	3,39
63*	63	289	165	25	25	12	6,19
80*	80	314	180	30	25	12	7,985
100*	100	329	195	30	25	12	8,935

J17 B 2 Führungsbüchsen mit Feststelleinheit


	0.70.					J1	7	В				
	Größe - ührung-	Zyl. Ø	+ 2 • HUB	+ HUB	НЗ	H4	H5	P1	P2	т		e (Kg) "0"
	seinheit	_	H1	H2	113	114	ПЭ	-	F2		Führun- geinheit	Feststell- einheit
	25	25	281	179	18	25	8	77,5	40	G 1/8	1,386	0,43
	32	32	319	209	20	25	10	83,5	50	G 1/8	2,59	0,73
	40	40	332	222	20	25	10	91,5	58	G 1/8	3,145	0,9
	50	50	356	236	25	25	10	106,5	70	G 1/8	4,55	1,4
	63*	63	374	250	25	25	12	129	85	G 1/8	5,99	2,31
	80*	80	419	285	30	25	12	150	100	G 1/8	7,79	3,7
Ī	100*	100	469	335	30	25	12	185,5	116	G 1/8	8,64	7,3

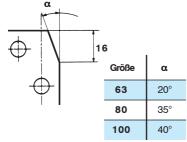


J18 mittellanger, beweglicher Schlitten (2 Führungsbüchsen)

J19 langer, beweglicher Schlitten (2 Führungsbüchsen)

Querschnitt. A-A

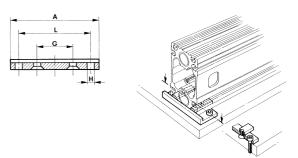
Größe				J18.					J19							
Führung-	Zyl. Ø	H1	+ HUB	+ 2 • HUB	H4	H5	Н6	Masse (Kg)	H1	+ HUB	+ 2 • HUB	H4	H5	Н6	Masse (Kg)	
seinheit			H2	Н3	114	113	110	Hub "0"		H2	НЗ	114	113	110	Hub "0"	
16	16	55	157	230	25	18	8	0,636	80	182	255	25	18	8	0,7	
25	25	65	167	258	25	18	8	0,904	100	202	293	25	18	8	1,044	
32	32	78	188	285	25	20	10	1,685	125	235	332	25	20	10	1,968	
40	40	85	195	304	25	20	10	2,15	150	260	369	25	20	10	2,645	
50	50	95	215	325	25	25	10	3,44	165	285	395	25	25	10	4,205	
63*	63	110	234	359	25	25	12	5,33	185	309	434	25	25	12	6,82	
80*	80	130	264	397	25	30	12	7,225	220	354	487	25	30	12	8,61	
100*	100	150	284	428	25	30	12	8,05	260	394	538	25	30	12	9,435	


Gemeinsame Abmessungen Führungseinheiten für Zylinder ISO 6431 - 6432

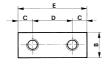
Füh	öße rung- nheit	Zyl. Ø	A 1	A2	А3	A 4	A 5	A6	С	СН	E1	E2	E3	E4	E5	G1	G2*	J	K	L1	L2	N
1	6	16	19,9	70,6	24	30	-	-	51	13	20	46	3,5	4,4	7,4	M4	Ø 4H8	4	12	32	77	1,78
2	:5	25	32	85	27	27	36	62	69	14	32	62	5	5,4	8,4	M5	Ø 6H8	6	16	47	96	1,78
3	2	32	38	108	32,5	32,5	46	82	85	22	38	82	5	6,4	10,4	M6	Ø 6H8	6	20	58	120	2,62
4	0	40	42	118	38	38	54	90	95	22	42	90	5	6,4	10,4	M6	Ø 8H8	7	22	66	130	2,62
5	0	50	48,1	140	46,5	46,5	69	110	115	27	48	110	6,5	8,4	13,4	M8	Ø 8H8	8	25	84	155	2,62
6	3	63	56	157,5	56,5	56,5	79,5	120	130	30	56	120	7,5	10,5	17,5	M8	Ø 8H8	8	28	98	176	2,62
8	0	80	65	178	72	72	95	142	150	32	65	142	8,5	10,5	18	M10	Ø 8H8	9	32	117	200	2,62
1	00	100	72	194	89	89	113	156	164	32	72	156	8,5	10,5	18	M10	Ø 8H8	9	32	133	214	2,62

* In Verbindung mit Pass-Stift, Toleranz m 6.

Funrungs-	Zyl.	SW1	SW2	SW2	SW2	SW2	SW2	v	γ	z	Masse (Kg) Hub "0"			nahme (g) es Hub
einheit	Ø	0111	OWZ	v	·	2	Zylinder	Zylinder	Führung- sstange	Führungseinheit Serie J14/J17				
16	16	10	9	M5	5,28	M10	0,073	0,55	0,98	2,6				
25	25	17	12	M5	5,28	M12	0,208	1,15	1,92	4				
32	32	17	17	G 1/8	10,78	M16x1,5	0,504	2,35	2,51	6				
40	40	19	17	G 1/8	10,78	M18x1,5	0,764	3,24	2,81	7,6				
50	50	24	22	G 1/8	10,78	M20x1,5	1,207	4,75	3,71	11				
63	63	24	22	G 1/8	10,78	M22x1,5	1,74	5,78	4,7	13,6				
80	80	30	30	G 1/8	10,78	M27x2	2,74	8,64	5,52	18				
100	100	30	30	G 1/8	10,78	M27x2	3,78	10,4	5,52	20				

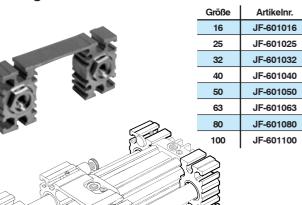

Achtung: die Platten für die Größen 63-80-100 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle.

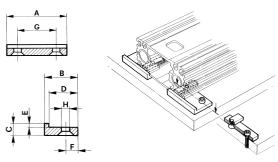
Fußbefestigungen aus Aluminium


 Größe	Α	В	С	D	Е	F	G	Н	L	Artikelnr.
16	52	30	10	26	4	9	20	Ø 4,5	43	JF-13016
25	70	30	10	26	4	9	32	Ø 5,5	57	JF-13025
32	85	35	10	30	5	10	38	Ø 6,5	72	JF-13032
40	92	35	10	30	5	10	42	Ø 6,5	79	JF-13040
50	11	40	15	35	5	12,5	48	Ø 8,5	102	JF-13050
63	13	45	15	40	5	15	56	Ø 10,5	112	JF-13063
80	16	45	15	40	5	15	65	Ø 10,5	135	JF-13080
100	17	45	15	40	5	15	72	Ø 10,5	151	JF-13100

Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Befestigungsplättchen aus Stahl


Größe	Α	В	С	D	Ε	F	Artikelnr
16	3	7	7,5	15	30	M4	JF-42016
25	4	8	10	15	35	M5	JF-42025
32 - 40	4	10	10	20	40	M6	JF-42040
50	6	13	10	30	50	M8	JF-42050
63	6	16	12,5	35	60	M10	JF-42063
80 - 100	8	16	15	40	70	M10	JF-42100

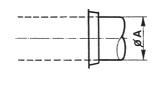


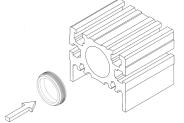
Die Standardpackung enthält 2 Stück mit Befestigungszubehör

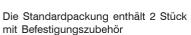
Führungsstangenträger für Führungseinheiten der Serien J10/J11/J12

Größe	Α	В	С	D	Е	F	G	н	Artikelnr.
16	50	30	10	26	3	9	31	Ø 4,5	JF-14016
25	55	30	10	26	3	9	34	Ø 5,5	JF-14025
32	60	35	10	30	4	10	38	Ø 6,5	JF-14032
40	65	35	10	30	4	10	40	Ø 6,5	JF-14040
50	70	40	15	35	4	12,5	45	Ø 8,5	JF-14050
63	85	45	15	40	4	15	56	Ø 10,5	JF-14063
80 - 100	90	45	15	40	4	15	58	Ø 10,5	JF-14100

Die Standardpackung enthält 4 Stück mit Befestigungszubehör


Größe	Α	В	С	D	Artikelnr.
16	3	7	16	M4	JF-43016
25	4	8	16	M5	JF-43025
32 - 40	4	10	18	M6	JF-43040
50	6	13	18	M8	JF-43050
63	6	16	22	M10	JF-43063
80 - 100	Я	16	25	M10	.IF-43100




Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Büchsen für Führungsstangenabstreifer

Größe	ØΑ	Artikelnr.
16	12	JF-19016
25	16	JF-19025
32	20	JF-19032
40	22	JF-19040
50	25	JF-19050
63	28	JF-19063
80 - 100	32	JF-19100

Führungseinheite	Führungseinheiten für Druckluftzylinder geeignet für:												
Zylinder ISO 6431 - 6432 Serie M Ø 16 ÷ 25 Serie K/KD Ø 32 ÷ 100	Kolbenstan- genlose Zylinder Serie S1 Ø 25 ÷ 50	Kurzhub- zylinder Serie W Ø 25 ÷ 100	Kompakt- zylinder STRONG Serie RS Ø 32 ÷ 63	Teleskop- zylinder zweistufig Serie RT2 Ø 32 ÷ 63									

KONSTRUKTIONSMERKMALE

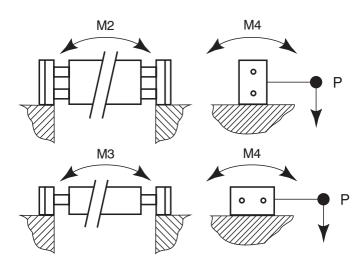
Außenprofil Führungsstangen aus Strangpreßaluminium

Robustheit und Zuverlässigkeit dank groß dimensionierter, hohler, verchromter Führungsstangen

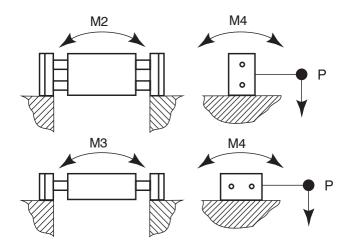
Wirtschaftlicher Betrieb aufgrund verschleißfester Materialien, dadurch hohe Lebensdauer (7000 - 10000 km)

Widerstandsfähigkeit und geräuscharmer Betrieb durch selbstschmierende Führungsbüchsen aus speziellem Stahl

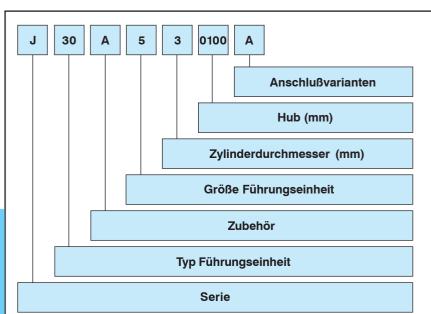
Standardisierte Ausführungen, aber auch kundenbezogene Modelle auf Anfrage


Bewährte hohe Widerstandsfähigkeit bei Spitzenbelastungen

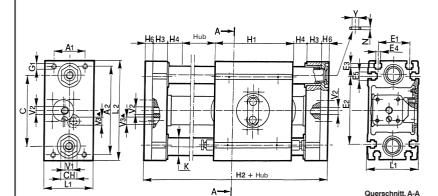
Sicherheitsabstand von 25 mm zur Vorbeugung von Unfällen für alle Modelle nach EN 349


	TECHNISCHE DATEN												
	Betriebsdruck:												
2 ÷ 10 bar	3 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar									
		Umgebungstemperatur											
		- 20°C ÷ 80°C											
	GRÖßEN												
16 ÷ 100	40 ÷ 80	25 ÷ 100	32 ÷ 63	32 ÷ 63									
	STAN	DARDHUBLÄNGEN	(mm)										
25 ÷ 1000	bis 800 mm max	5 ÷ 75	15 ÷ 800	120 ÷ 1200									
Min. und max. Hublängen, siehe entsprechende Typenschlüssel													

Führungseinheit für Druckluftzylinder ISO 6431 - 6432


Größe Führun- gseinh-		J		7B=J M2 (N	67=J6 m)	7B			J17=J17B=J67=J67B M3 (Nm)								
eit								Hub (n	n/m)								
	100	200	300	400	500	750	1000	100	200	300	400	500	750	1000			
16	30,4	48,4	58	84,8	103	148,8	194,8	29	47,4	70	84.2	102,6	148,6	194,6	9,4		
25	56,8	114	114	143,2	172,4	246	320	53	82,6	112	141,8	171,4	245,4	320	20,4		
32	89,4	133	178	222	270	386	502	80	126,8	173,6	220	267,2	384	500	39,8		
40	117	169,2	223,6	279	334,4	474,8	616	104	160,6	217,4	274	330	472	614	53,8		
50	161,4	230	301,4	373,2	446	630	816	138	212,8	287,2	361,6	436	622	808	85,6		
63	228	312	402	493	586	818	1102	192,8	288	383	478	573	810	1048	123,4		
80	328,6	434	550,4	668	788,8	1091,2	1398	270	394	518	642	766	1076	1386	186		
100	349,6	456	570	687	806	1108,6	1414	284	408	532	656	780	1090	1400	203,2		

Führungseinheit für kolbenstangenlose Zylinder


Größe	Zylinder- durchmesser	Standardso	chlitten J30	Langer Sc	hlitten J31	M4 (Nm)	
eit	mm	M2 (Nm)	M3 (Nm)	M2 (Nm)	M3 (Nm)	W4 (MIII)	
40	25	68,4	42,4	110,2	96,2	53,8	
50	32	118,4	81,8	198	178,6	85,6	
63	40	192,2	147,2	315	289,8	123,4	
80	50	298,2	233,2	516	481,2	186	

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Verhütung von Unfällen nach EN 349 gebaut

SERIE

J = Führungseinheit

TYP FÜHRUNGSEINHEIT

- **30** = Führungseinheit, geschützter Zylinder (2 Führungsbüchsen-Standardschlitten)
- **31** = Führungseinheit, geschützter Zylinder (2 Führungsbüchsen-langer Schlitten)

ZUBEHÖR

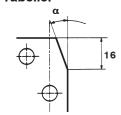
A = mit Abstreifer an den Führungsstangen

GRÖßE FÜHRUNGSEINHEIT

- 4 = 40 nur für Ø 25 Zylinder
- $5 = 50 \text{ nur für } \emptyset 32 \text{ Zylinder}$
- $6 = 63 \text{ nur für } \emptyset 40 \text{ Zylinder}$
- $7 = 80 \text{ nur für } \emptyset 50 \text{ Zylinder}$

ZYLINDERDURCHMESSER

- **2** = 25
- 3 = 32
- 4 = 40
- 5 = 50


HUB

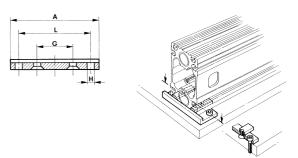
Länge in mm bis max. 800 mm

ANSCHLUBVARIANTEN

- A = Anschlüsse von beiden Zylinderköpfen
- **B** = Anschlüsse nur am rechtem Zylinderkopf

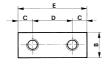
Achtung: die Platten für die Größen 63-80 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle.

1	
Größe	α
63	20°
80	35°


																Тур	
	Größe	Ø Zylinder	A1	A2	С	СН	E1	E2	E3 E4 E5 G1 K		E5 G1	i1 K	H1		H2 + HUB		
_														Standard	Lang	Standard	Lang
	40	25	42	118	95	22	42	90	5	6,4	10,4	M6	22	110	205	220+hub	315+hub
	50	32	48,1	140	115	27	48	110	6,5	8,4	13,4	M8	25	150	280	270+hub	400+hub
_	63	40	56	157,5	130	30	56	120	7,5	10,5	17,5	M8	28	200	350	324+hub	474+hub
	80	50	65	178	150	32	65	142	8,5	10,5	18	M10	32	240	440	374+hub	574+hub

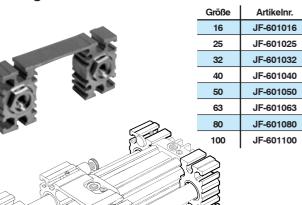
											Masse (K	g) Hub "0"		Massezun	ahme (g) pro	des Hub
Н3	H4	Н6	L1	L2	N	Υ	V1	V2	V3	Führungseinheit Zylinder Führungs- Standa		Zylinder		Standard-	Langer	
										Standard- schlitten	Langer Schlitten	Standard- schlitten	Langer Schlitten	stangen	schlitten	Schlitten
20	25	10	66	130	2,62	10,78	M5	G 1/8	G 1/8	2,89	3,61	0,707	1,02	2,81	2,14	2,14
25	25	10	84	155	2,62	10,78	G 1/8	G 1/4	G 1/4	4,813	6,243	1,298	1,914	3,71	3,28	3,28
25	25	12	98	176	2,62	10,78	G 1/8	G 3/8	G 3/8	6,54	8,02	2,489	3,685	4,7	5,54	5,54
30	25	12	117	200	2,62	10,78	G 1/8	G 3/8	G 3/8	11,04	14,32	2,489	3,685	5,52	5,54	5,54

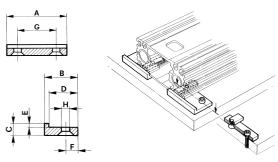
Fußbefestigungen aus Aluminium


 Größe	Α	В	С	D	Е	F	G	Н	L	Artikelnr.
16	52	30	10	26	4	9	20	Ø 4,5	43	JF-13016
25	70	30	10	26	4	9	32	Ø 5,5	57	JF-13025
32	85	35	10	30	5	10	38	Ø 6,5	72	JF-13032
40	92	35	10	30	5	10	42	Ø 6,5	79	JF-13040
50	11	40	15	35	5	12,5	48	Ø 8,5	102	JF-13050
63	13	45	15	40	5	15	56	Ø 10,5	112	JF-13063
80	16	45	15	40	5	15	65	Ø 10,5	135	JF-13080
100	17	45	15	40	5	15	72	Ø 10,5	151	JF-13100

Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Befestigungsplättchen aus Stahl


Größe	Α	В	С	D	Ε	F	Artikelnr
16	3	7	7,5	15	30	M4	JF-42016
25	4	8	10	15	35	M5	JF-42025
32 - 40	4	10	10	20	40	M6	JF-42040
50	6	13	10	30	50	M8	JF-42050
63	6	16	12,5	35	60	M10	JF-42063
80 - 100	8	16	15	40	70	M10	JF-42100

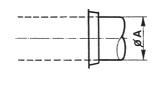


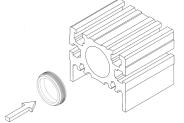
Die Standardpackung enthält 2 Stück mit Befestigungszubehör

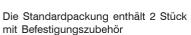
Führungsstangenträger für Führungseinheiten der Serien J10/J11/J12

Größe	Α	В	С	D	Е	F	G	н	Artikelnr.
16	50	30	10	26	3	9	31	Ø 4,5	JF-14016
25	55	30	10	26	3	9	34	Ø 5,5	JF-14025
32	60	35	10	30	4	10	38	Ø 6,5	JF-14032
40	65	35	10	30	4	10	40	Ø 6,5	JF-14040
50	70	40	15	35	4	12,5	45	Ø 8,5	JF-14050
63	85	45	15	40	4	15	56	Ø 10,5	JF-14063
80 - 100	90	45	15	40	4	15	58	Ø 10,5	JF-14100

Die Standardpackung enthält 4 Stück mit Befestigungszubehör


Größe	Α	В	С	D	Artikelnr.
16	3	7	16	M4	JF-43016
25	4	8	16	M5	JF-43025
32 - 40	4	10	18	M6	JF-43040
50	6	13	18	M8	JF-43050
63	6	16	22	M10	JF-43063
80 - 100	Я	16	25	M10	.IF-43100




Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Büchsen für Führungsstangenabstreifer

Größe	ØΑ	Artikelnr.
16	12	JF-19016
25	16	JF-19025
32	20	JF-19032
40	22	JF-19040
50	25	JF-19050
63	28	JF-19063
80 - 100	32	JF-19100

Führungseinheiten für Druckluftzylinder geeignet für:											
Zylinder ISO 6431 - 6432 Serie M Ø 16 ÷ 25 Serie K/KD Ø 32 ÷ 100	Kolbenstan- genlose Zylinder Serie S1 Ø 25 ÷ 50	Kurzhub- zylinder Serie W Ø 25 ÷ 100	Kompakt- zylinder STRONG Serie RS Ø 32 ÷ 63	Teleskop- zylinder zweistufig Serie RT2 Ø 32 ÷ 63							

KONSTRUKTIONSMERKMALE

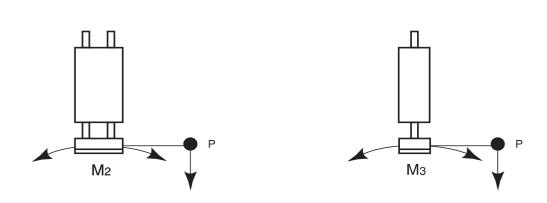
Außenprofil Führungsstangen aus Strangpreßaluminium

Robustheit und Zuverlässigkeit dank groß dimensionierter, hohler, verchromter Führungsstangen

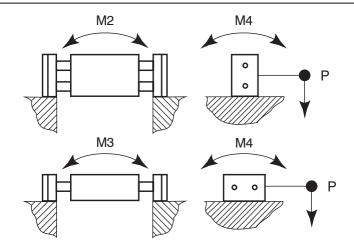
Wirtschaftlicher Betrieb aufgrund verschleißfester Materialien, dadurch hohe Lebensdauer (7000 - 10000 km)

Widerstandsfähigkeit und geräuscharmer Betrieb durch selbstschmierende Führungsbüchsen aus speziellem Stahl

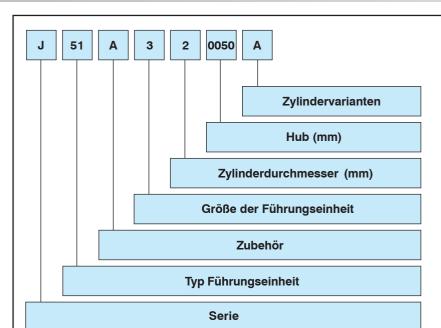
Standardisierte Ausführungen, aber auch kundenbezogene Modelle auf Anfrage


Bewährte hohe Widerstandsfähigkeit bei Spitzenbelastungen

Sicherheitsabstand von 25 mm zur Vorbeugung von Unfällen für alle Modelle nach EN 349


	Т	ECHNISCHE DATE	N								
		Betriebsdruck:									
2 ÷ 10 bar	3 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar							
		Umgebungstemperatur									
		- 20°C ÷ 80°C									
	GRÖßEN										
16 ÷ 100	40 ÷ 80	25 ÷ 100	32 ÷ 63	32 ÷ 63							
	STAN	DARDHUBLÄNGEN	(mm)								
25 ÷ 1000 bis 800 mm max 5 ÷ 75 15 ÷ 800 120 ÷ 1200											
	Min. und max. Hublä	ngen, siehe entsprech	ende Typenschlüssel	ı							

Führungseinheit für...


		Zylinder I	SO 6431 - 6432	2		Kurzhubzylinder					
Größe Führungsei- nheit	J10 M2=M3 (Nm)	J11 M2=M3 (Nm)	J12=J12B M2=M3 (Nm)	J14=J14B J64=J64B M2=M3 (Nm)	J16=J16B M2=M3 (Nm)	J51 M2=M3 (Nm)	J52 M2=M3 (Nm)	J53 M2=M3 (Nm)	J54 M2=M3 (Nm)		
16	3,2	6,4	11	7,4	11	-	-	-	-		
25	6	13,2	23,6	17,8	23,6	6	8,2	6	8,2		
32	12,2	27,2	49	37,4	49	12,2	15	12,2	15		
40	17,8	36,8	73,6	51	73,6	17,8	19,8	17,8	19,8		
50	24,8	56	107,8	78	107,8	24,8	29,8	24,8	29,8		
63	35,2	85,6	156,8	114	156,8	35,2	42,8	35,2	42,8		
80	52	136	248	173,2	248	52	64,4	52	64,4		
100	52	160	298	173,2	298	52	64,4	52	64,4		

Führungseinheit für...

	Zy	linder ISO 6431- 64	132	Kurzhubzylinder	
Größe Führun- gseinh- eit	J16=J16B M2/M3 (Nm)	J18 M2/M3 (Nm)	J19 M2/M3 (Nm)	J56 M2/M3 (Nm)	M4 (Nm)
16	12,8/8,8	10,4/4,4	12,8/8,8	-	9,4
25	28/19	22,2/8,6	28/19	22/7,6	20,4
32	55,6/38,8	45,2/17	55,6/38,8	42,6/15	39,8
40	80/59,4	58,5/22,6	80/59,4	57,4/19,8	53,8
50	121/75,2	92/33,4	121/75,2	90,4/29,8	85,6
63	173,6/122,6	135,2/52	173,6/122,6	130/42,4	123,4
80	270,2/196	204,2/84	270,2/196	196,6/64,4	186
100	318,6/245,6	230,8/109,2	318,6/245,6	213,2/64,4	203,2

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Verhütung von Unfällen nach EN 349 gebaut

SERIE

J = Führungseinheit

TYP FÜHRUNGSEINHEITGRÖßE

- 51 = Führungseinheit, überstehendeFührungsstangen (1 Führungsbüchse)
- 52 = Führungseinheit, überstehende Führungsstangen (2 Führungsbüchsen)
- 53 = Führungseinheit, geschützter Zylinder (1 Führungsbüchse)
- 54 = Führungseinheit, geschützter Zylinder (2 Führungsbüchsen)
- **56** = Führungseinheit, geschützter Zylinder (2 Führungsbüchsen + 2 Platten)

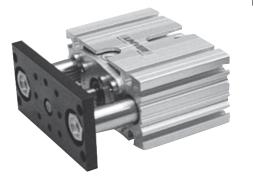
ZUBEHÖR

A = Abstreifer an den Führungsstangen

GRÖßE FÜHRUNGSEINHEIT

- 2 = 25 nur für Ø 20 Zylinder 3 = 32 nur für Ø 25 Zylinder 4 = 40 nur für Ø 32 Zylinder 5 = 50 nur für Ø 40 Zylinder 6 = 63 nur für Ø 50 Zylinder
- 6 = 63 nur für Ø 50 Zylinder 7 = 80 nur für Ø 63 Zylinder 8 = 100 nur für Ø 80 Zylinder

ZYLINDERDURCHMESSER

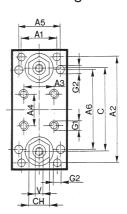

- 1 = 20 2 = 25
- **2** = 25 **3** = 32
- **3** = 32 **4** = 40
- 5 = 50
- **6** = 63
- **7** = 80

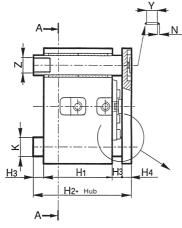
ZYLINDERHUB

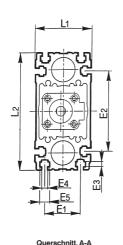
Standardhublänge in mm: 5 - 10 - 20 - 25 - 30 - 50 - 75

ZYLINDERVARIANTEN

A = Standardzylinder

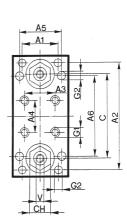

ANMERKUNG: Führungseinheiten haben serienmäßig einen Zylinder ohne Magnetausführung.

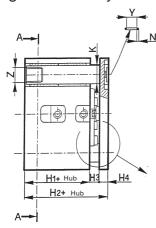

Für die Magnetausführung ist der Zusatz eines magnetischen Schalterkanals Serie DKJ... vorgesehen, der separat bestellt werden muß (siehe Abschnitt Zubehör Seite 6).

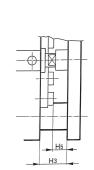


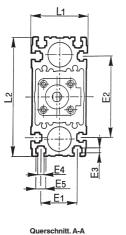
J51 1 Führungsbüchse mit überstehenden Führungsstangen

J52 2 Führungsbüchsen mit überstehenden Führungsstangen

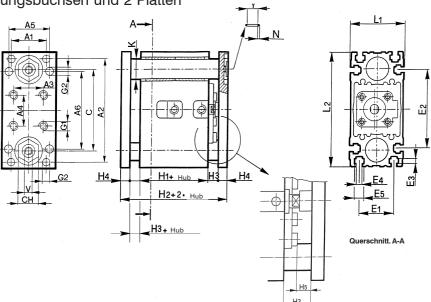





Größe			J51			J52	
Führung- seinheit	Zyl. Ø	H1	H2 + HUB	Masse (Kg) Hub "0"	H1	H2 + HUB	Masse (Kg) Hub "0"
25	20	36	107	0,5	62	133	0,56
32	25	42	120	0,875	74	152	0,955
40	32	45	125	1,225	80	160	1,34
50	40	50	132	2,17	90	172	2,36
63*	50	55	139	3,2	100	184	3,46
80*	63	62	152	5,04	114	204	6,125
100*	80	62	152	5,92	114	204	7,040


J53 1 Führungsbüchse mit geschütztem Zylinder

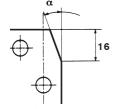
J54 2 Führungsbüchsen mit geschütztem Zylinder



	Größe			J53			J54				
	Führung-	Zyl. Ø	+ F	HUB	Masse (Kg)	+ 1	HUB	Masse (Kg)			
	seinheit	٥	H1	H2	Hub "0"	H1	H2	Hub "0"			
	25	20	36	75,5	0,475	62	101,5	0,54			
	32	25	42	86	0,845	74	118	0,925			
	40	32	45	90	1,18	80	125	1,3			
	50	40	50	96	2,1	90	136	2,3			
Ī	63*	50	55	103	3,13	100	148	3,39			
	80* 63		62	113	4,99	114	165	6,02			
Ī	100*	80	62	113	5,82	114	165	6,93			

J56 2 Führungsbüchsen und 2 Platten

Größe	l <u>.</u> .		J56	
Führung-	Zyl. Ø	+ HUB	+ 2 • HUB	Masse (Kg)
seinheit		H1	H2	Hub "0"
25	20	62	141	0,63
32	25	74	162	1,04
40	32	80	170	1,48
50	40	90	182	2,54
63*	50	100	196	3,68
80*	63	114	216	6,34
100*	80	114	216	7,19

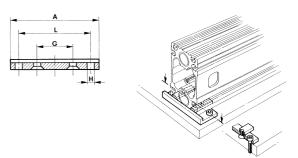

Gemeinsame Abmessungen für Führungseinheiten mit Kurzhubzylindern

Größe	Zyl. Ø	A 1	A2	А3	A 4	A5	A6	С	СН	E1	E2	E3	E4	E5	G1	G2*	НЗ	H4	H5	К	L1	L2
25	20	32	85	27	27	36	62	69	14	32	62	5	5,4	8,4	M5	Ø6H8	31,5	8	25	16	47	96
32	25	38	108	32,5	32,5	46	82	85	22	38	82	5	6,4	10,4	M6	Ø6H8	34	10	25	20	58	120
40	32	42	118	38	38	54	90	95	22	42	90	5	6,4	10,4	M6	Ø8H8	35	10	25	22	66	130
50	40	48,1	140	46,5	46,5	69	110	115	27	48	110	6,5	8,4	13,4	M8	Ø8H8	36	10	25	25	84	155
63	50	56	157,5	56,5	56,5	79,5	120	130	30	56	120	7,5	10,5	17,5	M8	Ø8H8	36	12	25	28	98	176
80	63	65	178	72	72	95	142	150	32	65	142	8,5	10,5	18	M10	Ø8H8	39	12	25	32	117	200
100	80	72	194	89	89	113	156	164	32	72	156	8,5	10,5	18	M10	Ø8H8	39	12	25	32	133	214

* In Verbindung mit Pass-Stift, Toleranz im 6.

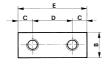
Größe	Zyl.	N	v	Y	z	Masse (Kg) Hub "0"					
GIODE	Ø	l N	ľ	ľ	2	Zylinder	Führungs- stangen	Zylinder	Führungs- einheit		
25	20	1,78	M5	5,28	M12	0,155	1,92	3,25	4		
32	25	2,62	G 1/8	10,78	M16x1,5	0,292	2,51	4,45	6		
40	32	2,62	G 1/8	10,78	M18x1,5	0,43	2,81	5,3	7		
50	40	2,62	G 1/8	10,78	M20x1,5	0,446	3,71	6,4	11		
63	50	2,62	G 1/8	10,78	M22x1,5	0,772	4,7	7,9	13,6		
80	63	2,62	G 1/8	10,78	M27x2	1,275	5,52	14,5	18		
100	80	2,62	G 1/8	10,78	M27x2	1,92	5,52	19,7	20		

Achtung: die Platten für die Größen 63-80-100 sind auf den 4 Seiten abgeschrägt gemäâ nachstehender Tabelle.



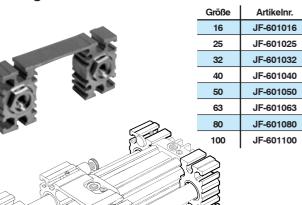
Größe	α
63	20°
80	35°
100	40°

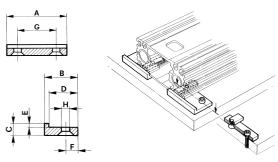
Fußbefestigungen aus Aluminium


 Größe	Α	В	С	D	Е	F	G	Н	L	Artikelnr.
16	52	30	10	26	4	9	20	Ø 4,5	43	JF-13016
25	70	30	10	26	4	9	32	Ø 5,5	57	JF-13025
32	85	35	10	30	5	10	38	Ø 6,5	72	JF-13032
40	92	35	10	30	5	10	42	Ø 6,5	79	JF-13040
50	11	40	15	35	5	12,5	48	Ø 8,5	102	JF-13050
63	13	45	15	40	5	15	56	Ø 10,5	112	JF-13063
80	16	45	15	40	5	15	65	Ø 10,5	135	JF-13080
100	17	45	15	40	5	15	72	Ø 10,5	151	JF-13100

Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Befestigungsplättchen aus Stahl


Größe	Α	В	С	D	Ε	F	Artikelnr
16	3	7	7,5	15	30	M4	JF-42016
25	4	8	10	15	35	M5	JF-42025
32 - 40	4	10	10	20	40	M6	JF-42040
50	6	13	10	30	50	M8	JF-42050
63	6	16	12,5	35	60	M10	JF-42063
80 - 100	8	16	15	40	70	M10	JF-42100

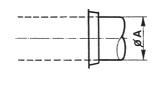


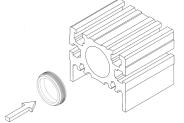
Die Standardpackung enthält 2 Stück mit Befestigungszubehör

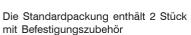
Führungsstangenträger für Führungseinheiten der Serien J10/J11/J12

Größe	Α	В	С	D	Е	F	G	н	Artikelnr.
16	50	30	10	26	3	9	31	Ø 4,5	JF-14016
25	55	30	10	26	3	9	34	Ø 5,5	JF-14025
32	60	35	10	30	4	10	38	Ø 6,5	JF-14032
40	65	35	10	30	4	10	40	Ø 6,5	JF-14040
50	70	40	15	35	4	12,5	45	Ø 8,5	JF-14050
63	85	45	15	40	4	15	56	Ø 10,5	JF-14063
80 - 100	90	45	15	40	4	15	58	Ø 10,5	JF-14100

Die Standardpackung enthält 4 Stück mit Befestigungszubehör


Größe	Α	В	С	D	Artikelnr.
16	3	7	16	M4	JF-43016
25	4	8	16	M5	JF-43025
32 - 40	4	10	18	M6	JF-43040
50	6	13	18	M8	JF-43050
63	6	16	22	M10	JF-43063
80 - 100	Я	16	25	M10	.IF-43100




Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Büchsen für Führungsstangenabstreifer

Größe	ØΑ	Artikelnr.
16	12	JF-19016
25	16	JF-19025
32	20	JF-19032
40	22	JF-19040
50	25	JF-19050
63	28	JF-19063
80 - 100	32	JF-19100

Führungseinheite	Führungseinheiten für Druckluftzylinder geeignet für:												
Zylinder ISO 6431 - 6432 Serie M Ø 16 ÷ 25 Serie K/KD Ø 32 ÷ 100	Kolbenstan- genlose Zylinder Serie S1 Ø 25 ÷ 50	Kurzhub- zylinder Serie W Ø 25 ÷ 100	Kompakt- zylinder STRONG Serie RS Ø 32 ÷ 63	Teleskop- zylinder zweistufig Serie RT2 Ø 32 ÷ 63									

KONSTRUKTIONSMERKMALE

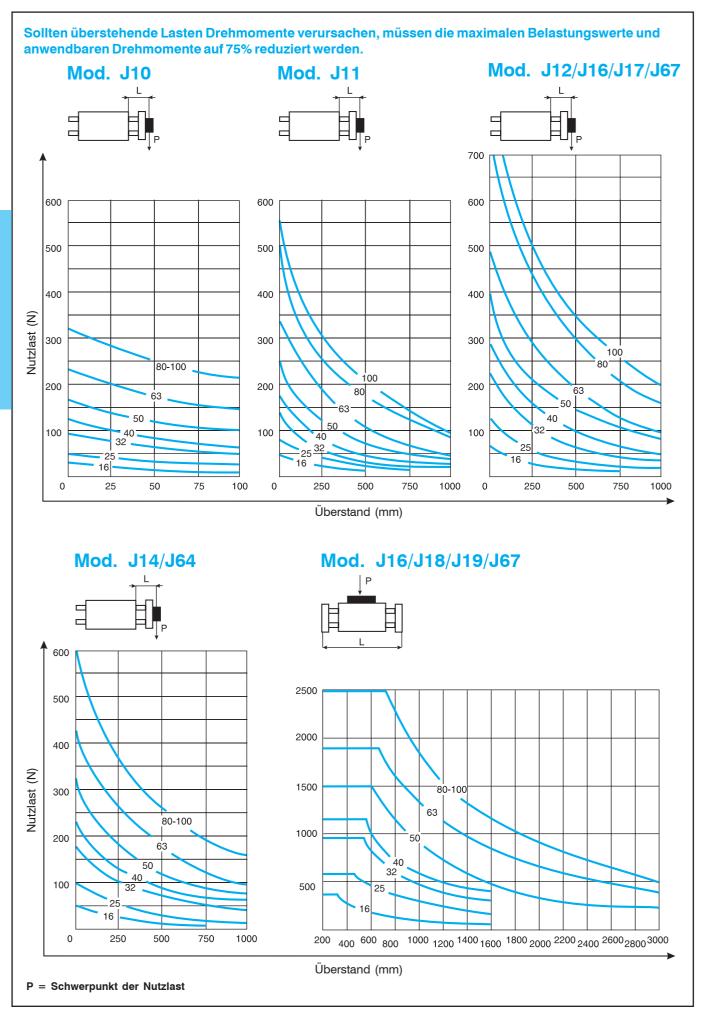
Außenprofil Führungsstangen aus Strangpreßaluminium

Robustheit und Zuverlässigkeit dank groß dimensionierter, hohler, verchromter Führungsstangen

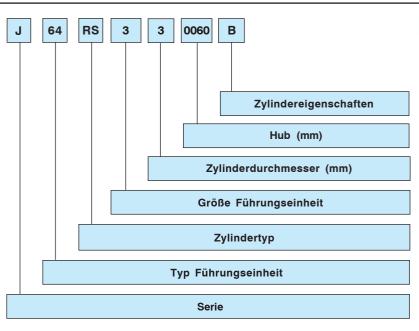
Wirtschaftlicher Betrieb aufgrund verschleißfester Materialien, dadurch hohe Lebensdauer (7000 - 10000 km)

Widerstandsfähigkeit und geräuscharmer Betrieb durch selbstschmierende Führungsbüchsen aus speziellem Stahl

Standardisierte Ausführungen, aber auch kundenbezogene Modelle auf Anfrage


Bewährte hohe Widerstandsfähigkeit bei Spitzenbelastungen

Sicherheitsabstand von 25 mm zur Vorbeugung von Unfällen für alle Modelle nach EN 349



TECHNISCHE DATEN												
		Betriebsdruck:										
2 ÷ 10 bar	2 ÷ 10 bar											
		Umgebungstemperatur										
		- 20°C ÷ 80°C										
		GRÖßEN		I								
16 ÷ 100	40 ÷ 80	25 ÷ 100	32 ÷ 63	32 ÷ 63								
	STAN	DARDHUBLÄNGEN	(mm)									
25 ÷ 1000	hie											
Min. und max. Hublängen, siehe entsprechende Typenschlüssel												

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Verhütung von Unfällen nach EN 349 gebaut

SERIE

 J = Familie Führungseinheit für Kompaktzylinder STRONG Ø 32 ÷ 63 mm

TYP FÜHRUNGSEINHEIT

- **64** = geschützter Zylinder
- **65** = geschützter Zylinder, durchgehende Öffnung
- **66** = geschützter Zylinder, durchgehende Öffnung zwei Platten
- **67** = geschützter Zylinder, zwei Platten Alle Typen mit Stangenabstreiferbuchsen

ZYLINDERTYP

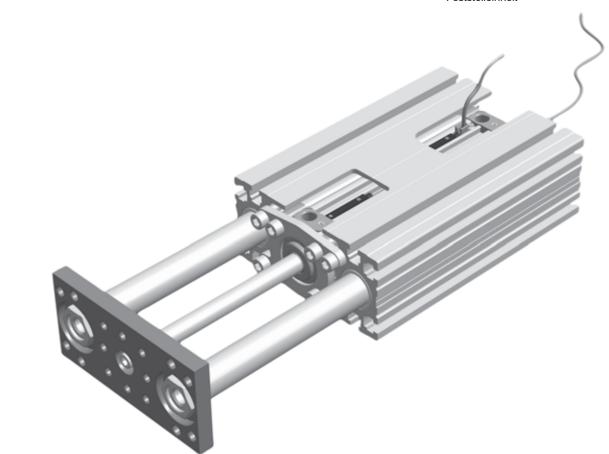
Zylinder Serie STRONG mit längem Kolben(RS22J auf Anfrage) mit Zylinderrohr um 180° gedreht im Vergleich zu den Speisungen zur Aufnahme der magnetischen Sensoren

GRÖßE FÜHRUNGSEINHEIT

- 3 = 32 nur für Zylinder Ø 32
- 4 = 40 nur für Zylinder Ø 40
- 5 = 50 nur für Zylinder Ø 50
- 6 = 63 nur für Zylinder Ø 63

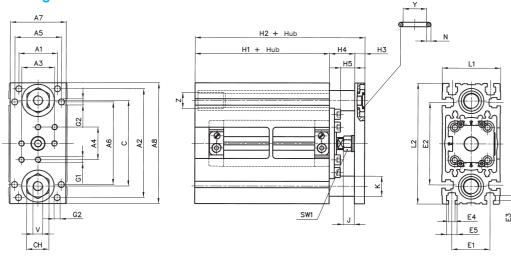
ZYLINDERGRÖßE

- **3** = 32
- 4 = 40
- **5** = 50
- **6** = 63

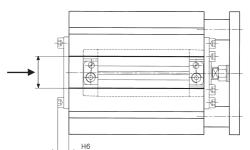

HUBLÄNGEN FÜHRUNGSEINHEIT

Standardhublängen mm:

0015 ÷ 0800 mm


ZYLINDEREIGENSCHAFTEN

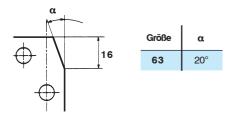
- A = Zylinder mit langem Kolben
- **B** = Zylinder mit langem Kolben und Feststelleinheit



J64___, 2 Führungsbüchsen

J65..., auf Anfrage, für
Hublängen über 50 mm
Führungseinheiten mit
durchgehender
Öffnung* zur
Positionierung der
Magnetsensoren in
Zwischenstellungen.

Diese Version beinhaltet die Zunahme von "H2" um den in der Tabelle aufgeführten Wert "H6".

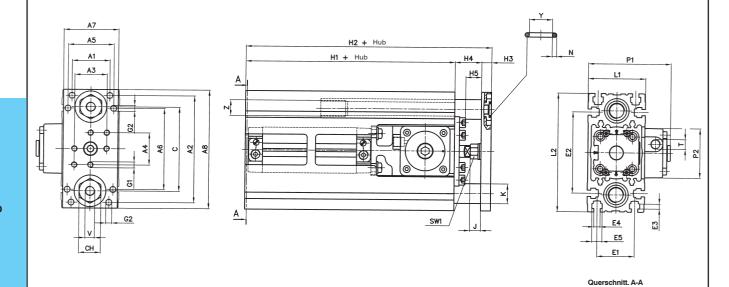

Zyl. Ø	Н6
32	11
40	12
50	14
63	14

Größe Führung einhe	s- Zyl.	A1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E5	G1
32	32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
50	50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
63	63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8

Grö Führt einl	ıngs-	Zyl. Ø	G2(*)	H1 + hub (**)	H2+ hub (**)	НЗ	H4	H5	J	K	L1	L2	N	SW1	٧	Y	z
3	2	32	Ø6 H8	78 + hub (**)	113 + hub (**)	10	25	14	11	20	58	120	2,62	13	1/8"	10,78	M16x1,5
4	0	40	Ø8 H8	82 + hub (**)	117 + hub (**)	10	25	13	11	22	66	130	2,62	16	1/8"	10,78	M18x1,5
5	0	50	Ø8 H8	91 + hub (**)	128 + hub (**)	12	25	11	7	25	84	155	2,62	18	1/8"	10,78	M20x1,5
6	3	63	Ø8 H8	98 + hub (**)	135 + hub (**)	12	25	11	7	28	98	176	2,62	18	1/8"	10,78	M22x1,5

Größe	Zyl. Ø	Masse Hu	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub						
		Ø	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder			
	32	32	1024	303	-	6	2,5	2,65			
	40	40	1325	483	-	7	2,8	4			
	50	50	2159	739	-	11	3,7	5,6			
	63	63	3025	1127	-	13,6	4,7	6,55			

Achtung: die Platten für die Größen 63 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle:


ACHTUNG: für alle Größen bis Hub 50 mm ist die Öffnung des stranggepreßten Körpers durchgehend in Übereinstimmung mit den Speisungsanschlüssen.

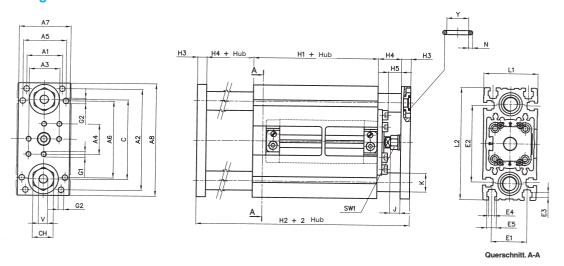
^{*} In Verbindung mit Paß-Stift, Toleranz m6.

^{**} Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

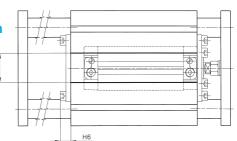
J 64...B, 2 Führungsbüchsen mit Feststelleinheit

Größe Führungs- einheit	Zyl. Ø	H1 + hub (**)	H2+ hub (**)	H4	H5	P1	P2
32	32	151 + hub (**)	188 + hub (**)	27	16	83,5	50
40	40	158 + hub (**)	194 + hub (**)	26	14	91,5	58
50	50	173 + hub (**)	209 + hub (**)	24	10	106,5	70
63	63	187 + hub (**)	223 + hub (**)	24	10	129	85

^{*} In Verbindung mit Paß-Stift, Toleranz m6.


^{**} Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

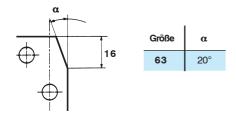
Größe	Zyl. Ø	Masse Hu	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub						
		Q	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder			
3	32	32	2241	303	779	6	2,5	2,65			
4	10	40	2876	483	992	7	2,8	4			
5	50	50	4590	739	1528,5	11	3,7	5,6			
6	63	63	6606	1127 2370		13,6	4,7	6,55			


Für Befestigungszubehör siehe Abschnitt High-Tech Seite 58-II.

J67..., 2 Führungsbüchsen

J66... auf Anfrage für Hublängen über 50 mm Führungseinheiten mit durchgehender Öffnung* zur Positionierung der Magnetsensoren in Zwischenstellungen.

Diese Version beinhaltet die Zunahme von "H2" um den in der Tabelle aufgeführten Wert "H6".

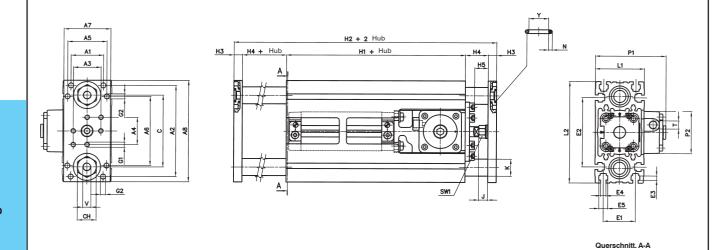

Zyl. Ø	Н6
32	11
40	12
50	14
63	14

Größe Führungs- einheit	Zyl. Ø	A1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E5	G1
32	32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
50	50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
63	63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8

Fül	röße nungs- nheit	Zyl. Ø	G2(*)	H1 + hub (**)	H2+ 2 hub (**)	НЗ	H4	H5	J	К	L1	L2	N	SW1	v	Υ
	32	32	Ø6 H8	78 + hub (**)	148 + 2 hub (**)	10	25	14	11	20	58	120	2,62	13	1/8"	10,78
	40	40	Ø8 H8	82 + hub (**)	152 + 2 hub (**)	10	25	13	11	22	66	130	2,62	16	1/8"	10,78
	50	50	Ø8 H8	91 + hub (**)	165 + 2 hub (**)	12	25	11	7	25	84	155	2,62	18	1/8"	10,78
	63	63	Ø8 H8	98 + hub (**)	172 + 2 hub (**)	12	25	11	7	28	98	176	2,62	18	1/8"	10,78

Größe	Zyl. Ø	Masse Hu	ıb "0" in	gr.	Massezunahme (gr.) pro mm Hub						
	Q	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder				
32	32	1092	330	-	6	2,5	2,65				
40	40	1428	483	-	7	2,8	4				
50	50	2264	739	-	11	3,7	5,6				
63	63	3159 1127		-	13,6	4,7	6,55				

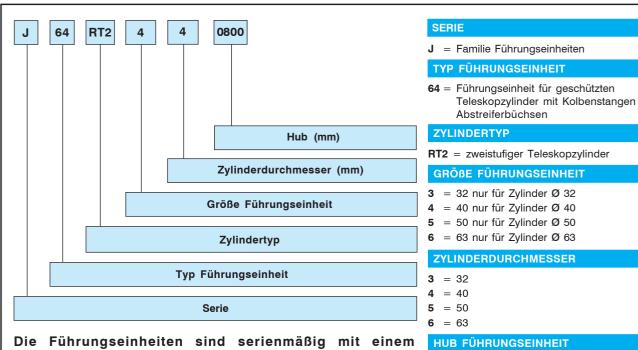
Achtung: die Platten für die Größen 63 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle:



- * In Verbindung mit Paß-Stift, Toleranz m6.
- ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

ACHTUNG: für alle Größen bis Hub 50 mm ist die Öffnung des stranggepreßten Körpers durchgehend in Übereinstimmung mit den Speisungsanschlüssen.

J67....B, 2 Führungsbüchsen mit Feststelleinheit


Größe Führungs- einheit	Zyl. Ø	H1 + hub (**)	H2+ hub (**)	H4	H5	P1	P2
32	32	151 + hub (**)	225 + hub (**)	27	16	83,5	50
40	40	158+ hub (**)	230 + hub (**)	26	14	91,5	58
50	50	173 + hub (**)	245 + hub (**)	24	10	106,5	70
63	63	187 + hub (**)	259 + hub (**)	24	10	129	85

- * In Verbindung mit Paß-Stift, Toleranz m6.
 ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

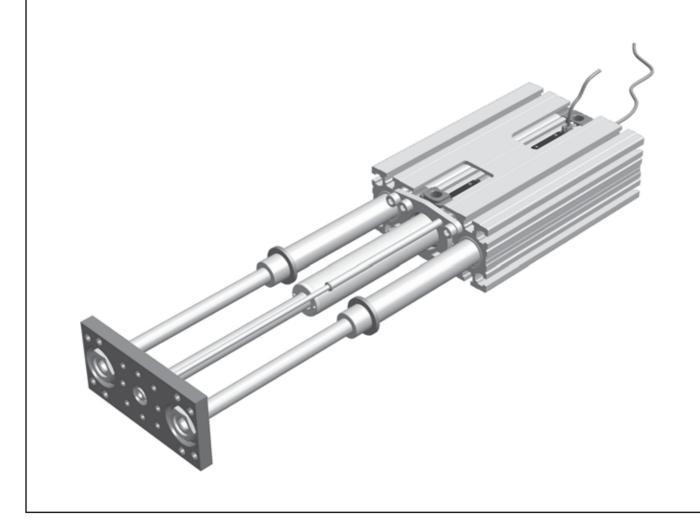
Größe		Zyl. Ø	Masse Hu	ıb "0" in	gr.	Massezunahme (gr.) pro mm Hub				
		Ø	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder		
	32	32	2492	303	779	6	2,5	2,65		
	40	40	3165	483	992	7	2,8	4		
Ī	50	50	4998	739	1528,5	11	3,7	5,6		
Ī	63	7153 112		1127	2370	13,6	4,7	6,55		

Für Befestigungszubehör siehe Abschnitt High-Tech Seite 58-II.

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Verhütung von Unfällen nach EN 349 gebaut

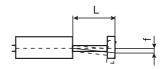
Standardhublängen in mm:

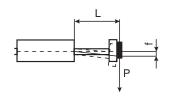
0120-0160-0180-0200-0300-0400-0500-0600-0700-0800-0900-1000-1100-1200

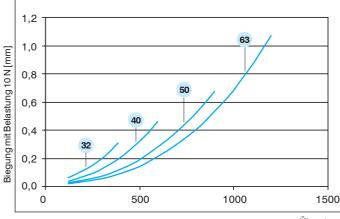

Hublängen min.-max.:

Ø 32 0160 ÷ 0400 mm

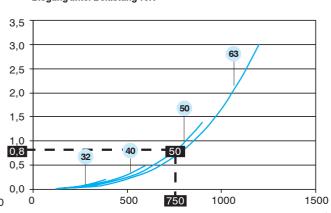
Ø 40 0160 ÷ 0600 mm


Ø 50 0120 ÷ 0900 mm


Ø 63 0120 ÷ 1200 mm



Biegungsdiagramm gemäß Länge der Führungseinheit



Biegung unter Eigengewicht 1,2

Biegung unter Belastung 10N

Überstand [mm]

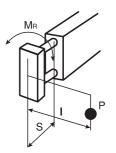
Anwendungsbeispiele:

Beispiel zur Errechnung der Biegung

Die Gesamtbiegung der Führungseinheit wird bestimmt indem die Biegung unter dem Eigengewicht mit der Biegung durch die Belastung summiert wird.

Für Belastungen, die von 10 N oder 100 N (Werte der Kurve) abweichen, erhält man die Biegung indem man den Kurvenwert K mit nachstehendem Verhältnis multipliziert:

$$f = K \cdot \frac{Q \text{ (Belastung)}}{10 \text{ N}}$$


Beispiel: Führungseinheit Größe 50 Länge L 750 m und Belastung Q 25N.

Auf der entsprechenden Kurve der Biegung unter Belastung 10N erhalte ich einen Koeffizient von 0,8 (auf der Kurve in Negativ angegeben) Daher:

$$f = 0.8 \cdot \frac{25}{10} = 2 \text{ mm}$$

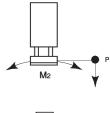
zu dem so ermittelten Wert den entsprechenden Biegungswert der Führungseinheit unter dem Eigengewicht addieren.

Werte des maximalen Widerstandsmoments MR

Größe	MR
32	4,7
40	7,8
50	10,2
63	10,2


Errechnung des Drehmoments

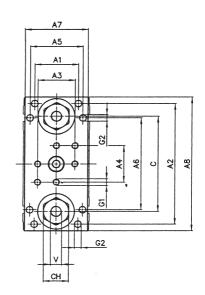
Für die Errechnung des Drehmoments M1 muß die Belastung P (N) mit dem Arm I (mm) multipliziert werden.

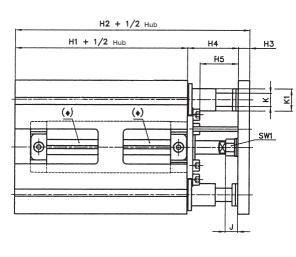

$$M1 = P \cdot I$$

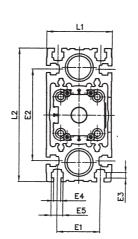
Der so erhaltene Wert muß niedriger sein als die maximalen MR Werte, die in der Tabelle angegeben sind: sollte der erhaltene Wert über diesem Wert liegen, muß auf die nächstgrößere Führungseinheit übergegangen werden.

Nutzlastdiagramm gemäß Länge der Führungseinheit

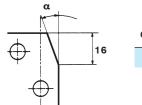
Maximale Werte des Widerstandsmoments (Nm)




Größe	M2=M3 Nm
32	7,4
40	12
50	17,8
63	17.8



Teleskopische Führungseinheit Magnetausführung J64RT2...


(*) Achtung: die Magnetsensoren der Serie DF__ dürfen nur in der Nähe des teleskopischen Magnethalterstängchens angebracht werden (wie in Zeichnung angegeben).

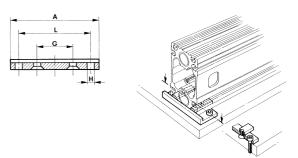
	Größe Führungs- einheit	Zyl. Ø	A1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E5	G1
	32	32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
_	40	40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
Ī	50	50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
-	63	63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8

Grö Fühn einl	.ings-	Zyl. Ø	G2(*)	H1+1/2 hub (**)	H2+1/2 hub (**)	НЗ	Н4	Н5	J	к	K1	L1	L2	N	SW1	v	Y
32	2	32	Ø6 H8	72 + 1/2 hub (**)	107+ 1/2 hub (**)	10	25	16	12	12	20	58	120	2,62	13	G 1/8	10,78
4 (0	40	Ø8 H8	78 + 1/2 hub (**)	113 + 1/2 hub (**)	10	25	15	13	14	22	66	130	2,62	16	G 1/8	10,78
5 (0	50	Ø8 H8	92 + 1/2 hub (**)	129 + 1/2 hub (**)	12	25	14	10	16	25	84	155	2,62	18	G 1/8	10,78
63	3	63	Ø8 H8	95 + 1/2 hub (**)	132 + 1/2 hub (**)	12	25	14	10	16	28	98	176	2,62	18	G 1/8	10,78

Größe	Zyl. Ø	Masse Hu	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub				
		Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder		
32	32	1092 330		-	6	2,5	2,65		
40	40	1428	483	-	7	2,8	4		
50	50	4590	4590 739 3159 1127		11	3,7	5,6		
63	63	3159			13,6	4,7	6,55		

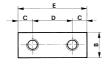
Achtung: die Platten für die Größen 63 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle:

Größe	α
63	20°


^{*} in Verbindung mit Paß-Stift, Toleranz 6 m

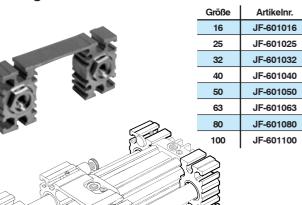
^{**} Mindesthublänge für TELESKOPISCHE FÜHRUNGSEINHEIT MAGNETAUSFÜHRUNG für Größen 32 und 40 = 160 mm (80 + 80) für Größen 50 und 63 = 120 mm (60 + 60).

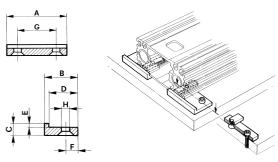
Fußbefestigungen aus Aluminium


 Größe	Α	В	С	D	Е	F	G	Н	L	Artikelnr.
16	52	30	10	26	4	9	20	Ø 4,5	43	JF-13016
25	70	30	10	26	4	9	32	Ø 5,5	57	JF-13025
32	85	35	10	30	5	10	38	Ø 6,5	72	JF-13032
40	92	35	10	30	5	10	42	Ø 6,5	79	JF-13040
50	11	40	15	35	5	12,5	48	Ø 8,5	102	JF-13050
63	13	45	15	40	5	15	56	Ø 10,5	112	JF-13063
80	16	45	15	40	5	15	65	Ø 10,5	135	JF-13080
100	17	45	15	40	5	15	72	Ø 10,5	151	JF-13100

Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Befestigungsplättchen aus Stahl


Größe	Α	В	С	D	Ε	F	Artikelnr
16	3	7	7,5	15	30	M4	JF-42016
25	4	8	10	15	35	M5	JF-42025
32 - 40	4	10	10	20	40	M6	JF-42040
50	6	13	10	30	50	M8	JF-42050
63	6	16	12,5	35	60	M10	JF-42063
80 - 100	8	16	15	40	70	M10	JF-42100

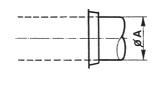


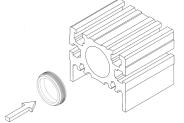
Die Standardpackung enthält 2 Stück mit Befestigungszubehör

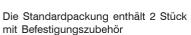
Führungsstangenträger für Führungseinheiten der Serien J10/J11/J12

Größe	Α	В	С	D	Е	F	G	н	Artikelnr.
16	50	30	10	26	3	9	31	Ø 4,5	JF-14016
25	55	30	10	26	3	9	34	Ø 5,5	JF-14025
32	60	35	10	30	4	10	38	Ø 6,5	JF-14032
40	65	35	10	30	4	10	40	Ø 6,5	JF-14040
50	70	40	15	35	4	12,5	45	Ø 8,5	JF-14050
63	85	45	15	40	4	15	56	Ø 10,5	JF-14063
80 - 100	90	45	15	40	4	15	58	Ø 10,5	JF-14100

Die Standardpackung enthält 4 Stück mit Befestigungszubehör

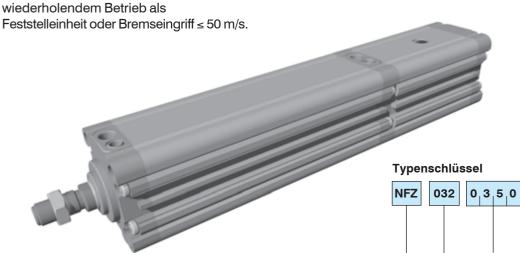

Größe	Α	В	С	D	Artikelnr.
16	3	7	16	M4	JF-43016
25	4	8	16	M5	JF-43025
32 - 40	4	10	18	M6	JF-43040
50	6	13	18	M8	JF-43050
63	6	16	22	M10	JF-43063
80 - 100	Я	16	25	M10	.IF-43100




Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Büchsen für Führungsstangenabstreifer

Größe	ØΑ	Artikelnr.
16	12	JF-19016
25	16	JF-19025
32	20	JF-19032
40	22	JF-19040
50	25	JF-19050
63	28	JF-19063
80 - 100	32	JF-19100



TECHNISCHE DATEN

- Brems- und Feststellsystem axial zum Zylinder angeordnet und im hinteren Teil innen integriert.
- Hohe Wiederholgenauigkeit und Eingriffsgeschwindigkeit (16 m/s).
- Empfohlene Anwendung: Bremseingriff in Notsituation bei erlaubter Zylindergeschwindigkeit; bei sich
- Mal die Schubkraft des mit 6 bar beaufschlagten Zylinders.

• Festhaltekraft der Kolbenstange ohne Axialspiel ≥ 3

 Die Feststellkraft ist unabhängig von den Umweltbedingungen oder von derWartung der Kolbenstange.

Hub

Durchmesser

Serie

Betriebsdruck: 3 ÷ 10 bar

Umgebungstemperatur: -10°C \div 70°C Betriebsmedium:gefilterte Luft 30 μ m

Zylinderrohr aus Strangpreßprofil in Aluminiumlegierung mit Kanal für versenkte Sensoren (Abschnitt Zubehör Seite 2-V)

Kolbenstange aus verchromtem Stahl

In Abwesenheit eines Signals und/oder Luftzufuhr greift die

Feststelleinheit ein und blockiert den Zylinder

Mindestdruck: ≥ 3 bar

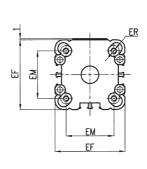
Befestigungen: (Abschnitt Zylinder Seite 49-I)

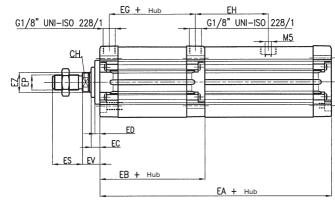
SERIE

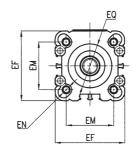
Pneumatischer Aktuator mit integriertem Sicherheits-Feststellsystem

DURCHMESSER

032-040-050-063 mm


MAX HUB


350 mm für ø 32


450 mm für ø 40

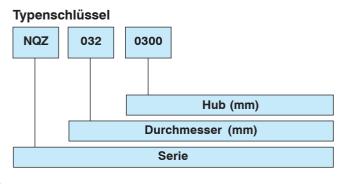
600 mm für ø 50

750 mm für ø 63

Ø	EA	EB	EC	ED	EF	EG	EH	EM	EN	EP	EQ	ER	ES	EV	EZ	СН
32	177	84	7	4	46	68,5	55,5	32,5	M6 x 13	M10 x 1,25	ø 30	M4 x 10	22	14	12	10
40	185	89	7	4	56	74	58	38	M6 x13	M12 x 1,25	ø 35	M6 x 10	24	14	16	13
50	194	94	10	5	66	76	63	46,5	M8 x 17,5	M16 x 1,25	ø 40	M6 x 10	32	18	20	17
63	214	114	10	5	79	99	63	56,5	M8 x 18	M16 x 1,25	ø 45	M6 x 10	32	18	20	17

Die Druckluftzylinder mit Digitalabtaster gehen aus den jeweiligen Achsen mit numerischer Kontrolle hervor und sind besonders ggeeignet für:

- ✓ Kontrolle der Halteposition
- ✓ Kontrolle der Kollisionsbeständigkeit bei Zyklen mit kritischer Sequenz
- ✓ Kontrolle des Niveaus bei der Palettisierung und/oder bei der Entpalettisierung von übereinanderliegenden Gegenständen
- ✓ Identifizierung, Klassifizierung und Auswahl der Abmessung von Gegenständen (Toleranz und Ausschuß)
- ✓ Zertifizierungsstationen von Werkstücken oder Werkzeugbruch an Maschinen zur Zerspanung.


Die Vorrichtung kann auf zwei verschiedene Arten eingesetzt werden:

- als Digitalabtaster
- als Druckluftaktuator mit Digitalabtastung

Das System benötigt keine Verbindung mit dem beweglichen Teil des Mechanismus, da es die Bewegung anhand eines internen Schiebers mit bidirektioneller pneumatischer Funktion selbst erzeugt. Dieser Schieber bewegt sich über die Betätigung eines 5-Wege Miniaturventils autonom bis er auf das Hindernis stößt und folglich die Feststellposition mißt.

Die Wiederholgenauigkeit beträgt. ± 0,02 mm.

Die Aufprallgeschwindigkeit auf das Hindernis wird von passenden kalibrierten Drosselungsvorrichtungen, die im Abtaster intergriert sind, vermindert, während die Translationskraft über einen normalen Druckregler reguliert werden kann. Um eine Ablesung mit der angegebenen Wiederholgenauigkeit zu erhalten, muß die Translationsgeschwindigkeit so konstant wie möglich sein.

SERIE

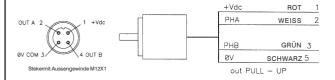
NQZ = Druckluftzylinder mit integriertem Abtaster.

DURCHMESSER

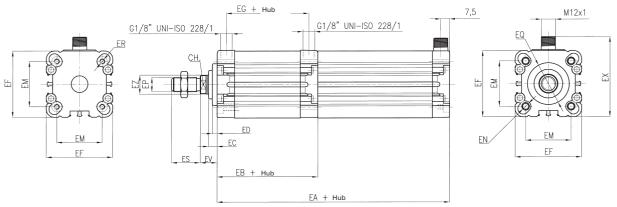
032 - 040 - 050 - 063 mm

HUB MAX

350 mm für Ø 32 450 mm für Ø 40 650 mm für Ø 50


700 mm für Ø 63

Achtung: Wenn der Zylinder in Umgebungen eingesetzt wird, in denen elektromagnetische Störungen auftreten, die höher sind als die von der EN-50081-2 Norm zulässigen, muß zusätzlich der Adapter TAE 011 A10305 (unsere Produktion) oder elektromagnetische Entstörer (im Handel erhältlich) zum Einsatz kommen.



Technische Daten					
Betriebsdruck	2 ÷ 10 bar				
Umgebungstemperatur	-10 ÷ 70°C				
Betriebsmedium	gefilterte Luft 30 μm				
Durchmessermm	032 - 040 - 050 - 063				
Standardhublängen	gemäß Durchmesser (siehe Typenschlüssel)				
Zylinderrohr	aus Strangpreßprofil in Aluminiumlegierung mit Kanal für versenkte Sensoren				
Kolbenstange	aus verchromtem Stahl				
Schraubensteigung	Ø 32 40 50 63				
	mm/giri 12 16 20,5				
Max. Geschwindigkeit	0,2 m/s (Abtaster) 0,8 m/s (Aktuator)				
Wiederholgenauigkeitmm	± 0,02				
Elektrische Daten					
Speisung	5 ÷ 24 V dc				
Ausgang	Stufe "L" < 0,5V Stufe "H" Vcc				
Grenzfrequenz	60 Khz				
Impedanz	2 Kohm				
Stromverbrauch	40 mA max				
Zeit Aufwärts-/Abwärtsbewegung	< 1µS				
Umdrehungsimpulse	500				
Auflösung	± 0,01 Impulse/Drehzahl				
Betriebstemperatur	- 10° ÷ +70				

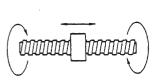
Schaltbild Encoder

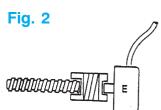
Einbaumasse

Ø	EA	EB	EC	ED	EF	EG	EM	EN	EP	EQ	ER	ES	EV	EX	EZ	СН
32	186	84	7	4	46	68,5	32,5	M6 x 13	M10 x 1,25	ø 30	M4 x 10	22	14	57	12	10
40	194	89	7	4	56	74	38	M6 x 13	M12 x 1,25	ø 35	M4 x 10	24	14	67	16	13
50	204	94	10	5	66	79	46,5	M8 x 17,5	M16 x 1,25	ø 40	M6 x 10	32	18	77	20	17
63	223	114	10	5	79	99	56,5	M8 x 18	M16 x 1,25	ø 45	M6 x 10	32	18	90	20	17

Zubehör:

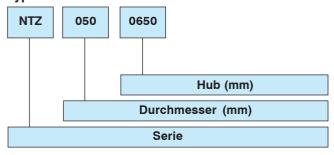
- Befestigungen: dieselben wie für Zylinder STRONG (Abschnitt Zylinder Seite 49-I)
- Versenkter Magnetsensor Serie DF-... (Abschnitt Zubehör Seite 2-V)
- Drahtabdeckungsband für Magnetsensor DHF-002100


Dieses Produkt ist das Ergebnis der Kombination von Druckluftaktuator mit Abtaster und integriertem Sicherheits-Feststellsystem.


Das System benötigt keine Verbindung mit dem beweglichen Teil des Mechanismus, da es die Bewegung anhand eines internen Schiebers mit bidirektioneller pneumatischer Funktion selbst erzeugt. Dieser Schieber bewegt sich über die Betätigung eines 5-Wege Miniaturventils autonom bis er auf das Hindernis stößt und folglich die Feststellposition misst.

Die Wertermittlung erfolgt indem die Translationsbewegung der Kolbenstange über eine Schraube-Schraubenmutter (Abb.1) in eine Drehbewegung der Schraube (Abb.2) verwandelt wird; der Encoder verwandelt die Drehung (mechanische Größe) in eine Folge von elektrischen Impulsen, d.h. er bestimmt das Verhältnis zwischen Umdrehungszahl und Anzahl der Impulse.

Encoderkolben und -gehäuse des Aktuators müssen notgedrungen fest sein im Vergleich zur Schraubendrehung; aus diesem Grund wurde daher der entsprechend abgeänderte Zylinder mit achteckigem Kolben und verdrehgesicherter Kolbenstange eingesetzt.


Die Aufprallgeschwindigkeit auf das Hindernis wird von passenden kalibrierten Drosselungsvorrichtungen, die im Abtaster integriert sind, vermindert, während die Translationsgeschwindigkeit über einen normalen Druckregler entsprechend reguliert werden kann.

Um eine Ablesung mit der angegebenen Genauigkeit zu erhalten, muß die Translationsgeschwindigkeit so konstant wie möglich sein.

Die wichtigsten Einsatzbereiche sind:

Mechanisierung, Palettisierung, Maschinenautomatisierung

Typenschlüssel

SERIE

NTZ = programmierbarer Druckluftaktuator mit integriertem Sicherheits-Feststellsystem

DURCHMESSER

032 - 040 - 050 - 063 mm

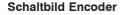
HUB MAX

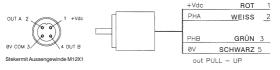
350 mm für Ø 32 450 mm für Ø 40

650 mm für Ø 50

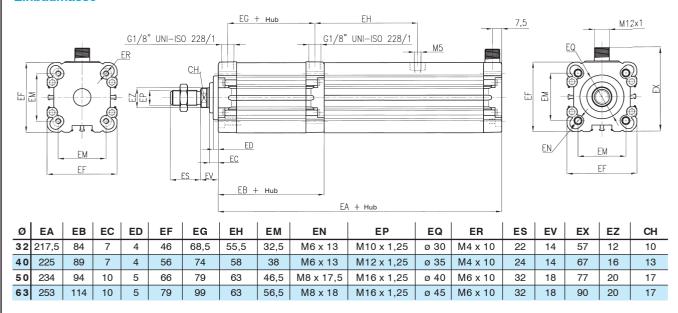
700 mm für Ø 63

Achtung: Wenn der Zylinder in Umgebungen eingesetzt wird, in denen elektromagnetische Störungen auftreten, die höher sind als die von der EN-50081-2 Norm zulässigen, muß zusätzlich der Adapter TAE 011 A10305 (unsere Produktion) oder elektromagnetische Entstörer (im Handel erhältlich) zum Einsatz kommen.


Betriebsdruck	2 ÷ 10 bar
Umgebungstemperatur	-10 ÷ 70°C
Betriebsmedium	gefilterte Luft 30 μm
Durchmessermm	032 - 040 - 050 - 063
Standardhublängen	gemäß Durchmesser (siehe Typenschlüssel)
Zylinderrohr	aus Strangpreßprofil in Aluminiumlegierung mit Kanal für versenkte Sensoren
Kolbenstange	aus verchromtem Stahl
Feststellfunktion	In Abwesenheit eines Signals und/oder
	Luftzufuhr wird der Zylinder blockiert
Mindestdruck	> 3 bar
Rückhaltekraft der Kolbenstange	> dreimal den Zylinderschub mit Speisung 6 bar
Max. Geschwindigkeit	1 m/s
Wiederholgenauigkeitmm	± 0,03 mm


Caratteristiche elettriche

Speisung	5 ÷ 24 V dc
Ausgang	Stufe "L" < 0,5V Stufe "H" Vcc
Grenzfrequenz	60 Khz
Impedanz	2 Kohm
Stromverbrauch	40 mA max
Zeit Aufwärts-/Abwärtsbewegung	< 1µS
Umdrehungsimpulse	500
Auflösung	± 0,01 Impulse/Drehzahl
Betriebstemperatur	- 10° ÷ +70


Theoretische Kräfte

Zyl. Ø	Theoretische Kraft N (mit Schubkraft 6 bar)					
32	400					
40	600					
50	960					
63	1600					

Einbaumasse

Zubehör:

- Befestigungen: dieselben wie für Zylinder STRONG (Abschnitt Zylinder Seite 49-I)
- Versenkter Magnetsensor Serie DF-... (Abschnitt Zubehör Seite 2-V)
- Drahtabdeckungsband für Magnetsensor DHF-002100